x^2-9x+20=0
x²-9x+20=0
-x(x-2)+5(2-x)=0
1/(x+6)(x+1)=2(x+1)
2/ x^2 +9x+20=0
a,x^2-9x+20=0
b,x^3-4x^2+5x=0
c,x^2=2x-15=0
d,(x^2-1)^2=4x+1
e,4x^3-9x^2+6x-1=0
f,x^4-4x^3-x^2+16x-12=0
a) Ta có: \(x^2-9x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
Vậy: x∈{4;5}
b) Ta có: \(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)
Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)(2)
Từ (1) và (2) suy ra x=0
Vậy: x=0
c) Sửa đề: \(x^2-2x-15=0\)
Ta có: \(x^2-2x-15=0\)
\(\Leftrightarrow x^2+3x-5x-15=0\)
\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: x∈{-3;5}
d) Ta có: \(\left(x^2-1\right)^2=4x+1\)
\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)
\(\Leftrightarrow x^4-2x^2-4x=0\)
\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)
\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)
\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)
Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
hay \(x^2+2x+2>0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: x∈{0;2}
tìm x thỏa mãn: x^2-9x+20=0
x2-5x-4x+20=0
x2-4x-5x+20=0
x(x-4)-5(x-4)=0
(x-4)(x-5)=0
\(\Rightarrow\hept{\begin{cases}x-4=0\Rightarrow x=4\\x-5=0\Rightarrow x=5\end{cases}}\)
tớ hỏi nốt nha
tính nhanh:202-192+182-172+...+22-12
\(x^2-9x+20=0\)
\(\Rightarrow x^2-2.x.\frac{9}{2}+\frac{81}{4}-\frac{1}{4}=0\)
\(\Rightarrow x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2-\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{9}{2}\right)^2-\left(\frac{1}{2}\right)^2=0\)
\(\Rightarrow\left(x-\frac{9}{2}-\frac{1}{2}\right)\left(x-\frac{9}{2}+\frac{1}{2}\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy \(x=5\)hoặc \(x=4\)
tìm x biết :
x^2-9x+20=0
<=>x^2-4x-5x+20=0
<=>x(x-4)-5(x-4)=0
<=>(x-5)(x-4)=0
=>x=5; x=4
\(x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow\left(x^2-4x\right)-\left(5x-20\right)=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Vậy \(x=4\) hoặc \(x=5\)
x2-9x+20=0
<=>x2 - 4x-5x +20 =0
<=>x(x-4) -5(x-4)=0
<=>(x-5)(x-4) =0
<=> x-5=0 hoặc x-4=0
<=> x=5 hoặc x=4
Vậy x=5 hoặc x=4
tìm x nguyên dương biết : x^4-9x^2+20=0
Pt\(\Leftrightarrow\left(x^4-4x^2\right)-\left(5x^2-20\right)=0\Leftrightarrow\left(x^2-4\right)\left(x^2-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2;x=-2\\x=\sqrt{5};x=-\sqrt{5}\end{cases}}}\)
Vì x nguyên dương nên \(\Rightarrow\orbr{\begin{cases}x=2\\x=\sqrt{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=2\\x=\sqrt{5}\end{cases}}\)
tìm x
a) x^2 - 4 = 0
b) x(x+5) = 9x
c) 3x^3 - 48x = 0
d) x^4 +x^2 - 20 = 0
a) \(x^2-4=0\)
\(\Rightarrow x^2-2^2=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
b) \(x\left(x+5\right)=9x\)
\(\Rightarrow x^2+5x-9x=0\)
\(\Rightarrow x^2-4x=0\)
\(\Rightarrow x\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
c) \(3x^3-48x=0\)
\(\Rightarrow3x\left(x^2-16\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\Rightarrow\left(x-4\right)\left(x+4\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
d) \(x^4+x^2-20=0\)
\(\Rightarrow\left(x^2\right)^2+x^2-20=0\)
Đặt x2 = a
\(\Rightarrow a^2+a-20=0\)
\(\Rightarrow a^2+5a-4a-20=0\)
\(\Rightarrow a\left(a+5\right)-4\left(a+5\right)=0\)
\(\Rightarrow\left(a-4\right)\left(a+5\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x^2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x^2+5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x^2=4\Rightarrow x=\pm2\\x^2=-5\Rightarrow x\in\varnothing\end{matrix}\right.\)
d) x4 + x2 - 20 = 0
\(\Rightarrow\) x4 + x2 = 20
\(\Rightarrow\) x4 + x2 = 24 + 22
\(\Rightarrow\) x = 2
a) x2 - 4 = 0
\(\Rightarrow\) x2 = 4
\(\Rightarrow\) x = 2 hoặc -2
giá trị x lớn nhất thỏa mãn:
x2-9x+20=0
ta có: x^2-9x+20=0
suy ra: x^2-4x-5x+20=0
x(x-4)-5(x-4)
(x-5)(x-4)
suy ra: x=5;x=4
nhớ click nha
a) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
b) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
c) \(\sqrt{x^2+6x-9}-2\sqrt{x^2-2x+1}+\sqrt{x^2}=0\)
a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4
=>2*căn(x+5)=4
=>căn (x+5)=2
=>x+5=4
=>x=-1
b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
=>2*căn x-1=16
=>x-1=64
=>x=65
c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)
TH1: \(x\ge3\)
\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)
TH2: \(2\le x< 3\)
\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH3: \(0\le x< 2\)
\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
TH4: \(x< 0\)
\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)