Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nghiên Hy
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 18:47

Để \(\frac{11}{\sqrt{x}-5}\) nhận giá trị nguyên thì \(\sqrt{x}-5\in\left\{\pm1;\pm11\right\}\)

Cần chú ý \(\sqrt{x}-5\ge-5\) nên \(\sqrt{x}-5\in\left\{-1;1;11\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\)

\(\Rightarrow x\in\left\{16;36;256\right\}\)

Nott mee
Xem chi tiết
Trúc Giang
24 tháng 6 2021 lúc 19:45

a) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}=1+\dfrac{4}{\sqrt{x}-2}\)

Để A nguyên thì 4 ⋮ √x - 2

\(\Rightarrow\sqrt{x}-2\inƯ\left(4\right)\)

\(\Rightarrow\sqrt{x}-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0;6;-2\right\}\)

Mà x \(\sqrt{x}\ge0\)

=> x thuộc {9; 1; 16; 0; 36}

b) 

NguyenHa ThaoLinh
Xem chi tiết
Minh Nguyen
5 tháng 4 2020 lúc 14:15

1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)

\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)

2) Để \(P=2\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)

\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)

\(\Leftrightarrow6\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)

Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)

3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)

Thay \(x=\frac{1}{4}\)vào P, ta được :

\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)

4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)

\(\Leftrightarrow9x-3\sqrt{x}-6=0\)

\(\Leftrightarrow3x-\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=3x-2\)

\(\Leftrightarrow x=9x^2-12x+4\)

\(\Leftrightarrow9x^2-13x+4=0\)

\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)

Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\)\(x=1\left(tm\right)\)

Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)

5) Để biểu thức nhận giá trị nguyên

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)

\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)

\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)

\(\Leftrightarrow8⋮2-\sqrt{x}\)

\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)

Ta loại các giá trị < 0

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)

\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

\(\)

Khách vãng lai đã xóa
vu minh hang
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 5 2016 lúc 10:08

a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))

Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có : 

\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)

b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))

Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)

Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có : 

\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

Trần Anh
Xem chi tiết
le thi thuy trang
Xem chi tiết
nam anh đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 9:17

ĐKXĐ: x>=0

Để A là số nguyên thì \(\sqrt{x}+13⋮\sqrt{x}+5\)

=>\(\sqrt{x}+5+8⋮\sqrt{x}+5\)

=>\(\sqrt{x}+5\inƯ\left(8\right)\)

mà \(\sqrt{x}+5>=5\)

nên \(\sqrt{x}+5=8\)

=>x=9

HT.Phong (9A5)
18 tháng 8 2023 lúc 9:28

ĐK: \(x\ge0\) 

Để \(\dfrac{\sqrt{x}+13}{\sqrt{x}+5}\) có giá trị nguyên 

Mà:  \(\dfrac{\sqrt{x}+13}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5+8}{\sqrt{x}+5}\)

\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+5}+\dfrac{8}{\sqrt{x}+5}=1+\dfrac{8}{\sqrt{x}+5}\)

Vậy:  \(8\) ⋮ \(\sqrt{x}+5\)

\(\Rightarrow\sqrt{x}+5\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Mà: \(\sqrt{x}+5\ge5\)

\(\Rightarrow\sqrt{x}+5\in\left\{8\right\}\)

\(\Rightarrow x=9\left(tm\right)\)

A Nguyễn văn
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Phạm Linh Chi
9 tháng 4 2018 lúc 0:12

Ta có :\(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

để A có giá trị nguyên thi \(\sqrt{x}+3\inƯ\left(8\right)\)

KẺ BẢNG TÌM GIÁ TRỊ x =1, 25