Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Hoàng Thiên Chương
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 0:52

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

Phạm Minh Đức
Xem chi tiết
trần gia bảo
25 tháng 4 2019 lúc 15:09

Ta có: \(A=4x^2+12x+9-1\)

   <=> \(A=\left(2x+3\right)^2-1\)

   <=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)

   <=> \(A=\left(2x+2\right)\left(2x+4\right)\)

   <=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)

   Vậy Amin = 8 khi x=0 

tth_new
25 tháng 4 2019 lúc 17:22

trần gia bảo bái phục bái phục!

                    Lời giải

Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)

Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)

\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)

\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))

Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2

Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2

Law Trafargal
Xem chi tiết
tthnew
22 tháng 12 2019 lúc 14:32

Theo mình đề này chỉ có max thôi nha!

\(B=\frac{3x^2-18x+9}{x^2-4x+4}=-\frac{3\left(x+3\right)^2}{5\left(x-2\right)^2}+\frac{18}{5}\le\frac{18}{5}\)

Đẳng thức xảy ra khi \(x=-3\)

Khách vãng lai đã xóa
Nguyen ha quyen
Xem chi tiết
minh trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 11 2022 lúc 14:19

\(=5\left(x^2-\dfrac{4}{5}xy+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}y^2-2y+2023\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y^2-10y+25\right)+2018\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2018>=2018\)

Dấu = xảy ra khi y=5 và x=2/5y=2

Ky Duyen Nguyen
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
Lê Tài Bảo Châu
5 tháng 8 2019 lúc 21:53

Đặt \(A=x^2-4x+3\)

\(=x^2-2.x.2+4-1\)

\(=\left(x-2\right)^2-1\)

Vì \(\left(x-2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)

                       \(\Leftrightarrow x=2\)

Vậy MIN A=-1 \(\Leftrightarrow x=2\)

Lê Tuấn Nghĩa
5 tháng 8 2019 lúc 21:53

\(x^2-4x+4-1\)

\(\left(x-2\right)^2-1\ge-1\)

GTNN của biểu thức là -1 khi x=2

I am➻Minh
5 tháng 8 2019 lúc 22:03

\(x^2-4x+3\)

\(=x^2-4x+4-1\)

\(=\left(x-2\right)^2-1\ge-1\)

\(\text{Dấu = xảy ra}\Leftrightarrow x-2=0\)

\(x=2\)

\(\text{Vậy GTNN của }x^2-4x+3\text{ là -1 khi x=2}\)