tính giá trị của đa thức sau : B(x)=x+2x^2 +3x^3+....+99x^99+100x^100 .Tại x=+-1
1. Tính giá trị các biểu thức sau :
A = 4x2 - 5. |x| + 2. |3-x| tại x= 5, x = -3
B = xy + x2y2 + x3y3 + ... + x100y100 tại x =1 , y = -1
C = 100x100 + 99x99 + 98x98 + ... + 2x2 + x tại x = 1
D = x99 - 100x98 + 100x97 - 100x96 + .... + 100x - 1 tại x =99
2. Rút gọn các đa thức sau
a) x (4x2 - 2x + 1) - 5y (X2 + 2x) + 10xy
b) ( x2 - xy + y2). 2x + 3y (x2 - xy - y2)
c) (x-2) (x+2)
d) x2 ( x+ y) - y ( x2 - y2)
1,+) Thay x = 5 vào biểu thức A, ta có:
A = 4.52 - 5.|5| + 2.|3 - 5|
A = 4.25 - 5.5 + 2.2
A = 100 - 25 + 4
A = 75 + 4 = 79
Thay x = 3 vào biểu thức A, ta có:
A = 4.32 - 5.|3| + 2.|3 - 3|
A = 4.9 - 5.3 + 2.0
A = 36 - 15 = 21
+) Ta có: B = xy + x2y2 + x3y3 + ... + x100y100
B = xy + (xy)2 + (xy)3 + ... + (xy)100
Thay x = 1; y= -1 vào biểu thức B, ta có:
B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ... + [1.(-1)]100
B = -1 + 1 - 1 + ... + 1
B = 0
+) Thay x = 1 vào C, ta có:
C = 100.1100 + 99.199 + 98.198 + ... + 2.12 + 1
C = 100 + 99 + 98 + ... + 2 + 1
C = (100 + 1).[(100 - 1) : 1 + 1] : 2
C = 101.100 : 2
C = 5050
+) Thay x = 99 vào biểu thức D, ta có:
D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1
D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99 + 1).9996 + ... + (99 + 1).99 - 1
D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1
D = 99 - 1 = 98
Bài 1: CM đẳng thức sau:
(x^2-xy+y^2)(x+y)=x^3+y^3.
Bài 2: Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến :
(x^2+2x+3)(3x^2-2x+1)-3x^2(x^2+1)-4x(x-1).
Bài 3: Tìm x biết :
(3x-1)(2x+7)-(x+1)(6x-5)=16.
Bài 4: CM rằng với mọi n thuộc Z thì:
n(n+5)-(n-3)(n+2) chia hết cho 6.
Bài 5: CM rằng với mọi số nguyên a giá trị của biểu thức:
a(a-1)-(a+3)(a+2) chia hết cho 6.
Bài 6: Tính giá trị của biểu thức sau bằng cách hợp lí:
A=x^5-100x^4+100x^3-100x^2+100x-9 tại x=99.
5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)
TL:
bài 4:
<=>n^2+5n-n^2-2n+3n+6
<=>6n+6
<=>6(n+1)
mà 6(n+1)\(⋮\) 6
=>n(n+5)-(n-3)(n+2)\(⋮\) 6(đpcm)
Cho đa thức f(x)=\(100x^{100}+99x^{99}+..+2x^2+x+1\)
Gọi m là số dư phép chia đa thức cho 3x-1.Chứng minh m<\(\frac{7}{4}\)
Cho f(x)=\(100x^{100}+99x^{99}+...+2x^2+x+1\)
Gọi m là số dư của phép chia đa thức cho 3x-1.Chứng minh:\(m< \frac{7}{4}\)
Lời giải:
Áp dụng định lý Bê-du về phép chia đa thức:
\(m=f\left(\frac{1}{3}\right)=100.\frac{1}{3^{100}}+99.\frac{1}{3^{99}}+....+2.\frac{1}{3^2}+\frac{1}{3}+1\)
\(\Rightarrow 3m=\frac{100}{3^{99}}+\frac{99}{3^{98}}+....+\frac{2}{3}+1+3\)
Trừ theo vế:
\(2m=3+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6m=9+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
Trừ theo vế:
\(4m=7-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4m=7-\frac{200}{3^{100}}-\frac{1}{3^{99}}< 7\Rightarrow m< \frac{7}{4}\) (đpcm)
1/Tìm x,biết:
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
b)1+2+3+4+...+x=820
c)3(x+1)=9.27
d)x+2x+3x+...+99x+100x=15150
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
f)3x+3x+1+3x+2=351
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
a) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5555\)
\(\Rightarrow x+x+1+x+2+x+3+...+x+100=5555\)
\(\Rightarrow101\cdot x+5050=5555\)
\(\Rightarrow101\cdot x=5555-5050\)
\(\Rightarrow101\cdot x=505\)
\(\Rightarrow x=505:101\)
\(\Rightarrow x=5\)
b) \(1+2+3+4+...+x=820\)
\(\Rightarrow\left(x+1\right)\cdot\left[\left(x-1\right):1+1\right]:2=820\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+1-1\right):2=820\)
\(\Rightarrow\left(x+1\right)\cdot x:2=820\)
\(\Rightarrow x\cdot\left(x+1\right)=820\cdot2\)
\(\Rightarrow x\cdot\left(x+1\right)=1640\)
Ta thấy: \(40\cdot41=1640\)
Vậy: \(x=40\)
Cho đa thức :
\(F\left(x\right)=100x^{100}+99x^{99}+98x^{98}+...+2x^2+x+1\)
Tính\(F\left(1\right)\)
\(=1+2+3+4+...+100\)
\(=\frac{100.101}{2}=5050\)
Cho biểu thức C=99+99x+99X2+99x3+...+99xn+99xn+1.Tính giá trị của biểu thức C tại x=100
Với \(x=100\)\(\Rightarrow x-1=99\)
Ta có: \(C=99+99x+99x^2+99x^3+.......+99x^n+99x^{n+1}\)
\(=x-1+\left(x-1\right).x+\left(x-1\right).x^2+........+\left(x-1\right).x^n+\left(x-1\right).x^{n+1}\)
\(=x-1+x^2-x+x^3-x^2+......+x^{n+1}-x^n+x^{n+2}-x^{n+1}\)
\(=-1+x^{n+2}=x^{n+2}-1\)
Thay \(x=100\)vào biểu thức ta được:
\(C=100^{n+2}-1\)
1) Cho P(x)= 100x^100 + 99x^99 +...+ 2x^2 + x
Tính P(1);P(-1)
2)Cho Q (x) = x^99 - 100x^99 + 100x^97 + 100x^96
Tính Q(99)
3)Cho 2 đa thức:
P(x)=x^2 + 2 nx + m^2
Q(x)=x^2 + (2m+1) x + m^2
Tìm m biết P(1)=Q(-1)
4)Ch P(x) = ax^2 + bx + c
Chứng tỏ P(-1).P(-2) < hoặc =0
3.
\(P\left(1\right)=x^2+2mx+m^2=1+2m+m^2\\ Q\left(-1\right)=x^2+\left(2m+1\right)x+m^2=1-2m-1+m^2=-2m+m^2\)
\(P\left(1\right)=Q\left(-1\right)\\ \Rightarrow\left(1+2m+m^2\right)-\left(-2m+m^2\right)=0\\ \Leftrightarrow1+4m=0\\ \Rightarrow m=-0,25\)
Vậy \(m=-0,25\)
1) Cho P(x)= 100x^100 + 99x^99 +...+ 2x^2 + x
Tính P(1);P(-1)
2)Cho Q (x) = x^99 - 100x^99 + 100x^97 + 100x^96
Tính Q(99)
3)Cho 2 đa thức:
P(x)=x^2 + 2 nx + m^2
Q(x)=x^2 + (2m+1) x + m^2
Tìm m biết P(1)=Q(-1)
4)Ch P(x) = ax^2 + bx + c
Chứng tỏ P(-1).P(-2) < hoặc =0
Câu 2:
Sửa đề; \(Q\left(x\right)=x^{99}-100x^{98}+100x^{97}-100x^{96}\)
x=99 nên x+1=100
\(Q\left(x\right)=x^{99}-x^{98}\left(x+1\right)+x^{97}\left(x+1\right)-x^{96}\left(x+1\right)\)
\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}\)
\(=-x^{96}=-99^{96}\)