tìm GTNN
A.\(\frac{x^2+2x+3}{x+1}\)
với x>-1
B.\(\frac{x^2-5x-2}{x-2}\)
với x>2
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right)\): \(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)(với x >0, x khác 4)
Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
Giúp mình với ạ
1. Tìm điều kiện xác định của mỗi phương trình sau
a) \(\frac{2x-1}{x-3}\)- \(\frac{5x+2}{x+7}\) = 13
b) \(\frac{3\left(x+3\right)}{4-x^2}\) + \(\frac{1}{2+x}\) = \(\frac{5x+9}{x-3}\)
c) \(\frac{2x-1}{x+3}\) - \(\frac{5x-2}{2x-7}\) = 13
d) \(\frac{3\left(x+3\right)}{x^2+2x}\) + \(\frac{1}{1+x}\) = \(\frac{5x+9}{x^2-1}\)
1) \(\frac{X+2}{X+3}+\frac{X-1}{X+1}=\frac{2}{X^2+4X+3}+1\)
2)\(\frac{X+1}{X-2}+\frac{2X-1}{X-1}=\frac{2}{X^2-3X+2}+\frac{11}{2}\)
3) Tìm GTLN CỦA -2X2+4X+3
4)\(\frac{X+1}{X-2}+\frac{X}{X+1}-\frac{2X+5}{X^2-X-2}=2\)
5)\(\frac{2X-1}{X+2}+\frac{X}{X+3}-\frac{2X^2+X+1}{X^2+5X+6}=\frac{-9}{2}\)
\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)
\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)
\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)
\(\Rightarrow x^2-3x-6=0\)
.....
\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)
\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)
\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)
.....
\(3,\)\(-2x^2+4x+3\)
\(=-2\left(x^2-2x-\frac{3}{2}\right)\)
\(=-2\left[\left(x^2-2x+1\right)-\frac{5}{2}\right]\)
\(=-2\left(x-1\right)^2+5\)
Đa thức này lớn nhất =5 khi và chỉ khi \(\left(x-1\right)^2\)nhỏ nhất
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Cho biểu thức A =\(\dfrac{x-2}{x+1}\)và B =\(\dfrac{3}{x-2}+\dfrac{6-5x}{4-x^2}+\dfrac{2x}{x+2}\)với x\(\ne\pm2\) x\(\ne-1\)
a,Tính giá trị của A khi x =1
b,Chứng minh B =\(\dfrac{2x}{x-2}\)
c,Đặt P =A.B .Tìm x để P\(\le\) 2
a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)
b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)
c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)
\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)
P<=2
=>x+1>0
=>x>-1
Tìm tập nghiệp xác định và giải các phương trình sau:
a)\(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
b)\(\frac{\left(x+2\right)^2}{2x-3}=\frac{x^2-10}{2x-3}\)
c)\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)
d)\(\frac{5x-2}{3}+\frac{\left(x+1\right)\left(x-1\right)}{3x-1}=\frac{\left(x+2\right)\left(1-3x\right)}{9x-3}\)
Bạn nào giúp mình với ạ :<
Thực hiện phép tính
a) \(\left(\frac{2x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{3}\)
b) \(\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
c) \(\frac{1}{x-1}-\frac{x^3-x}{x^2+1}.\left(\frac{1}{x^2-2x+1}+\frac{1}{1-x^2}\right)\)
giải phương trình:\(\frac{2x}{6x^2-x+3}+\frac{5x}{4x^2+5x+2}+\frac{x}{2x^2+3x+1}=\frac{1}{3}\)
b, \(\frac{1}{x+1}+\frac{2}{x+2}+\frac{1}{x+3}=\frac{1}{x+4}+\frac{2}{x+5}+\frac{1}{x+6}\)
c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)
d,\(\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}=0\)
e,\(\frac{9x}{x^2-2x+3}=\frac{5x^2+9x+15}{x^2+3x+3}\)
a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)
Ta thấy x=0 không là nghiệm của PT
Xét \(x\ne0\)
Khi đó PT
<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)
Đặt \(2x+\frac{1}{x}=a\)
=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)
<=> \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)
<=> \(6a^3-44a^2-191a-45=0\)
Xin lỗi đến đây tớ ra nghiệm không đẹp
c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\) ĐKXĐ \(x\ne-3\)
<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)
<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)
<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)
<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)
\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ
b,\(\frac{1}{x+1}+\frac{2}{x+2}+\frac{1}{x+3}=\frac{1}{x+4}+\frac{2}{x+5}+\frac{1}{x+6}\)ĐKXĐ \(x\ne-1;-2;-3;-4;-5;-6\)
<=>\(\left(\frac{1}{x+1}-\frac{1}{x+6}\right)+2\left(\frac{1}{x+2}-\frac{1}{x+5}\right)+\left(\frac{1}{x+3}-\frac{1}{x+4}\right)=0\)
<=>\(\frac{5}{x^2+7x+6}+\frac{6}{x^2+7x+10}+\frac{1}{x^2+7x+12}=0\)
Đặt \(x^2+7x+6=a\)
=> \(\frac{5}{a}+\frac{6}{a+4}+\frac{1}{a+6}=0\)
<=> \(12a^2+90a+120=0\)
<=> \(a=\frac{-15\pm\sqrt{65}}{4}\)
Thay vào tính x nhưng bài này tớ ra nghiệm không đẹp
Chứng minh rằng :
a) Giá trị của biểu thức : \(\left(\frac{x+2}{x}\right)^2:\left(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\right)\)bằng 1 với mọi giá trị \(x\ne0;x\ne-2\)
b) Giá trị của biểu thức\(\left(\frac{x}{2x-6}-\frac{x^2}{x^2-9}+\frac{x}{2x-9}\left(\frac{3}{x}-\frac{1}{x-3}\right)\right):\frac{x^2-5x-6}{18-2x^2}\) bằng 1 với mọi giá trị \(x\ne0;x\ne+-3;x\ne-1;x\ne6\)
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
Bài 1. Cho biểu thức:
\(B=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right)\cdot\frac{x^2-100}{x^2+4}\)
a, Tìm điều kiện để biểu thức B có nghĩa?
b, Tìm giá trị của B tại x=20040
Bài 2 Cho bieu thuc \(M=\frac{x-3}{2x-2}+\frac{2}{x-1}\)
Với giá trị nào của x thì M=2