Tìm các số nguyên n thỏa
a) a(2n+6) . (3n—9)=1
b) 1/3.3n=7.3.93—2.3n
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15≤n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Cho dãy số u n xác định bởi u 1 = 5 , u n + 1 n + 1 = u n n + 2 n + 2 . 3 n với mọi n ≥ 1 . Tìm số nguyên nhỏ nhất thỏa mãn u n n - 2 n > 5 100
A. 146.
B. 233.
C. 232.
D. 147.
Cho dãy số ( u n ) xác định bởi u 1 = 5 , u n + 1 n + 1 = u n n + 2 n + 2 . 3 n với mọi n ≥ 1 . Tìm số nguyên nhỏ nhất thỏa mãn u n n - 2 n > 5 100
A. 146.
B. 233.
C. 232.
D. 147.
Tìm tất cả các số tự nhiên n sao cho:
a) n + 6 ⋮ n + 1
b) 4n + 9 ⋮ 2n + 1
a) \(\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
Để n + 6 ⋮ n + 1 thì :
⇒ n + 1 + 5 ⋮ n + 1 mà n + 1 ⋮ n + 1
Như thế 5 ⋮ n + 1 và n + 1 ∈ Ư(5)
⇒ Ư(5)={ 1;5 }
n + 1 = 1 ⇒ n = 0
n + 1 = 5 ⇒ n = 4
Vậy .............
⋮⋮⋮B2:Tìm các số nguyên n sao cho biểu thức sau nguyên
A=3n+2/n-1
B=3n+1/3n-1
tìm các số nguyên n để số hữu tỉ có giá trị là số nguyên: a)n-21/n+10 b)3n+9/n-4 c)6n+5/2n-1
a: Để A là số nguyên thì n-21 chia hết cho n+10
=>n+10-31 chia hết cho n+10
=>n+10 thuộc {1;-1;31;-31}
=>n thuộc {-9;-11;21;-41}
b: Để B là số nguyên thì 3n+9 chia hết cho n-4
=>3n-12+21 chia hết cho n-4
=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}
=>n thuộc {5;3;7;1;11;-3;25;-17}
c: C nguyên
=>6n+5 chia hết cho 2n-1
=>6n-3+8 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n nguyên
nên 2n-1 thuộc {1;-1}
=>n thuộc {1;0}
tìm n thuộc Z để các số sau là số nguyên:
a.6n-4/2n+1
b.3n+2/4n-4
c.4n-1/3-2n
`a in ZZ`
`=>6n-4 vdots 2n+1`
`=>3(2n+1)-7 vdots 2n+1`
`=>7 vdots 2n+1`
`=>2n+1 in Ư(7)={+-1,+-7}`
`=>2n in {0,-2,6,-8}`
`=>n in {0,-1,3,-4}`
`b in ZZ`
`=>3n+2 vdots 4n-4`
`=>12n+8 vdots 4n-4`
`=>3(4n-4)+20 vdots 4n-4`
`=>20 vdots 4n-4`
`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
`=>4n-4 in {+-4,+-20}`
`=>n-1 in {+-1,+-5}`
`=>n in {0,2,6,-4}`
`c in ZZ`
`=>4n-1 vdots 3-2n`
`=>2(3-2n)-7 vdots 3-2n`
`=>7 vdots 3-2n`
`=>3-2n in Ư(7)={+-1,+-7}`
`=>2n in {4,0,-4,10}`
`=>n in {2,0,-2,5}`
a) đk: \(n\ne\dfrac{-1}{2}\)
Để \(\dfrac{6n-4}{2n+1}\) nguyên
<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên
<=> \(3-\dfrac{7}{2n+1}\) nguyên
<=> \(7⋮2n+1\)
Ta có bảng
2n+1 | 1 | -1 | 7 | -7 |
n | 0 | -1 | 3 | -4 |
tm | tm | tm | tm |
b)đk: \(n\ne1\)
Để \(\dfrac{3n+2}{4n-4}\) nguyên
=> \(\dfrac{3n+2}{n-1}\) nguyên
<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên
<=> \(3+\dfrac{5}{n-1}\) nguyên
<=> \(5⋮n-1\)
Ta có bảng:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Thử lại | tm | loại | tm | loại |
c) đk: \(n\ne\dfrac{3}{2}\)
Để \(\dfrac{4n-1}{3-2n}\) nguyên
<=> \(\dfrac{4n-1}{2n-3}\) nguyên
<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên
<=> \(2+\dfrac{5}{2n-3}\) nguyên
<=> \(5⋮2n-3\)
Ta có bảng:
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
tm | tm | tm | tm |
Giải:
a) \(\dfrac{6n-4}{2n+1}\)
Để \(\dfrac{6n-4}{2n+1}\) là số nguyên thì \(6n-4⋮2n+1\)
\(6n-4⋮2n+1\)
\(\Rightarrow6n+3-7⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 | 3 |
Vậy \(n\in\left\{-4;-1;0;3\right\}\)
b) \(\dfrac{3n+2}{4n-4}\)
Để \(\dfrac{3n+2}{4n-4}\) là số nguyên thì \(3n+2⋮4n-4\)
\(3n+2⋮4n-4\)
\(\Rightarrow12n+8⋮4n-4\)
\(\Rightarrow12n-12+20⋮4n-4\)
\(\Rightarrow20⋮4n-4\)
\(\Rightarrow4n-4\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Ta có bảng giá trị:
4n-4 | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
n | -4 (t/m) | \(\dfrac{-3}{2}\) (loại) | \(\dfrac{-1}{4}\) (loại) | 0 (t/m) | \(\dfrac{1}{2}\) (loại) | \(\dfrac{3}{4}\) (loại) | \(\dfrac{5}{4}\) (loại) | \(\dfrac{3}{2}\) (loại) | 2 (t/m) | \(\dfrac{9}{4}\) (loại) | \(\dfrac{7}{2}\) (loại) | 6 (t/m) |
Vậy \(n\in\left\{-4;0;2;6\right\}\)
c) \(\dfrac{4n-1}{3-2n}\)
Để \(\dfrac{4n-1}{3-2n}\) là số nguyên thì \(4n-1⋮3-2n\)
\(4n-1⋮3-2n\)
\(\Rightarrow6-4n+1⋮3-2n\)
\(\Rightarrow1⋮3-2n\)
\(\Rightarrow3-2n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
3-2n | -1 | 1 |
n | 2 | 1 |
Vậy \(n\in\left\{1;2\right\}\)
Chúc bạn học tốt!
Tìm n thuộc N để 2n+1 , 3n+1 là các SCP còn 2n+9 là số nguyên tố