`a in ZZ`
`=>6n-4 vdots 2n+1`
`=>3(2n+1)-7 vdots 2n+1`
`=>7 vdots 2n+1`
`=>2n+1 in Ư(7)={+-1,+-7}`
`=>2n in {0,-2,6,-8}`
`=>n in {0,-1,3,-4}`
`b in ZZ`
`=>3n+2 vdots 4n-4`
`=>12n+8 vdots 4n-4`
`=>3(4n-4)+20 vdots 4n-4`
`=>20 vdots 4n-4`
`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
`=>4n-4 in {+-4,+-20}`
`=>n-1 in {+-1,+-5}`
`=>n in {0,2,6,-4}`
`c in ZZ`
`=>4n-1 vdots 3-2n`
`=>2(3-2n)-7 vdots 3-2n`
`=>7 vdots 3-2n`
`=>3-2n in Ư(7)={+-1,+-7}`
`=>2n in {4,0,-4,10}`
`=>n in {2,0,-2,5}`
a) đk: \(n\ne\dfrac{-1}{2}\)
Để \(\dfrac{6n-4}{2n+1}\) nguyên
<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên
<=> \(3-\dfrac{7}{2n+1}\) nguyên
<=> \(7⋮2n+1\)
Ta có bảng
2n+1 | 1 | -1 | 7 | -7 |
n | 0 | -1 | 3 | -4 |
tm | tm | tm | tm |
b)đk: \(n\ne1\)
Để \(\dfrac{3n+2}{4n-4}\) nguyên
=> \(\dfrac{3n+2}{n-1}\) nguyên
<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên
<=> \(3+\dfrac{5}{n-1}\) nguyên
<=> \(5⋮n-1\)
Ta có bảng:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Thử lại | tm | loại | tm | loại |
c) đk: \(n\ne\dfrac{3}{2}\)
Để \(\dfrac{4n-1}{3-2n}\) nguyên
<=> \(\dfrac{4n-1}{2n-3}\) nguyên
<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên
<=> \(2+\dfrac{5}{2n-3}\) nguyên
<=> \(5⋮2n-3\)
Ta có bảng:
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
tm | tm | tm | tm |
Giải:
a) \(\dfrac{6n-4}{2n+1}\)
Để \(\dfrac{6n-4}{2n+1}\) là số nguyên thì \(6n-4⋮2n+1\)
\(6n-4⋮2n+1\)
\(\Rightarrow6n+3-7⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 | 3 |
Vậy \(n\in\left\{-4;-1;0;3\right\}\)
b) \(\dfrac{3n+2}{4n-4}\)
Để \(\dfrac{3n+2}{4n-4}\) là số nguyên thì \(3n+2⋮4n-4\)
\(3n+2⋮4n-4\)
\(\Rightarrow12n+8⋮4n-4\)
\(\Rightarrow12n-12+20⋮4n-4\)
\(\Rightarrow20⋮4n-4\)
\(\Rightarrow4n-4\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
Ta có bảng giá trị:
4n-4 | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
n | -4 (t/m) | \(\dfrac{-3}{2}\) (loại) | \(\dfrac{-1}{4}\) (loại) | 0 (t/m) | \(\dfrac{1}{2}\) (loại) | \(\dfrac{3}{4}\) (loại) | \(\dfrac{5}{4}\) (loại) | \(\dfrac{3}{2}\) (loại) | 2 (t/m) | \(\dfrac{9}{4}\) (loại) | \(\dfrac{7}{2}\) (loại) | 6 (t/m) |
Vậy \(n\in\left\{-4;0;2;6\right\}\)
c) \(\dfrac{4n-1}{3-2n}\)
Để \(\dfrac{4n-1}{3-2n}\) là số nguyên thì \(4n-1⋮3-2n\)
\(4n-1⋮3-2n\)
\(\Rightarrow6-4n+1⋮3-2n\)
\(\Rightarrow1⋮3-2n\)
\(\Rightarrow3-2n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
3-2n | -1 | 1 |
n | 2 | 1 |
Vậy \(n\in\left\{1;2\right\}\)
Chúc bạn học tốt!