Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoanghuongly
Xem chi tiết
Nguyễn Thị Anh
2 tháng 8 2016 lúc 13:53

Hỏi đáp Toán

Nguyễn Hà Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2022 lúc 12:35

C=|2x-3/5|+4/3>=4/3

Dấu = xảy ra khi x=3/10

D=|x-3|+|-x-2|>=|x-3-x-2|=5

Dấu = xảy ra khi -2<=x<=3

Nguyễn Trường Giang
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
20 tháng 8 2018 lúc 16:18

\(I=\left(x-2\right)^2+\left(x-5\right)^2\)

Ta có :

\(\left(x-2\right)^2\ge0\forall\) và \(\left(x-5\right)^2\ge0\forall x\)

=> \(I\ge0\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\)

=> không có giá trị nào để I đạt giá trị nhỏ nhất .

kudo shinichi
20 tháng 8 2018 lúc 19:06

\(I=\left(x-2\right)^2+\left(x-5\right)^2\)

Đặt \(x-2=t\)

\(\Rightarrow I=t^2+\left(t-3\right)^2\)

\(I=t^2+t^2-6t+9\)

\(I=2t^2-6t+9\)

\(I=2.\left(t^2-2.t.1,5+2,25\right)+4,5\)

\(I=2.\left(t-1,5\right)^2+4,5\)

Ta có: \(2.\left(t-1,5\right)^2\ge0\forall t\)

\(\Rightarrow2.\left(t-1,5\right)^2+4,5\ge4,5\forall t\)

\(I=4,5\Leftrightarrow2.\left(t-1,5\right)^2=0\Leftrightarrow t-1,5=0\Leftrightarrow t=1,5\)

\(\Rightarrow x-2=1,5\)

\(\Rightarrow x=3,5\)

Vậy \(I_{min}=4,5\Leftrightarrow x=3,5\)

Tham khảo nhé~

An Nhiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Vũ Hà Phương
Xem chi tiết
Dang Tung
17 tháng 12 2023 lúc 8:10

\(D=\dfrac{\left|x\right|+2023}{\left|x\right|+2022}=\dfrac{\left|x\right|+2022}{\left|x\right|+2022}+\dfrac{1}{\left|x\right|+2022}\\ =1+\dfrac{1}{\left|x\right|+2022}\)

Nhận thấy : \(\left|x\right|\ge0\forall x\inℝ\)

\(\Rightarrow\left|x\right|+2022\ge2022\)

\(\Rightarrow\dfrac{1}{\left|x\right|+2022}\le\dfrac{1}{2022}\)

\(\Rightarrow D=1+\dfrac{1}{\left|x\right|+2022}\le1+\dfrac{1}{2022}=\dfrac{2023}{2022}\)

Dấu = xảy ra khi : \(\left|x\right|=0\Rightarrow x=0\)

Vậy GTLN của D là : \(\dfrac{2023}{2022}\) tại x=0

nguyễn hoàng mai
Xem chi tiết
ngonhuminh
7 tháng 12 2016 lúc 16:46

sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html

Khả Khả
Xem chi tiết
Đinh Anh Thư
Xem chi tiết
jane28
Xem chi tiết
alibaba nguyễn
20 tháng 10 2016 lúc 22:22

Vì cái này là hàm đồng biến nên không cần dùng cosi hay bụng cũng có thể giải được nên mình mới thắc mắc thôi

Điều kiện xác định \(-2\le x\le2\)

Vì hàm này đồng biến nên (bạn tự chứng minh đồng biến nhé)

Nên A lớn nhất khi x lớn nhất hay A = 0 khi x = 2

A nhỏ nhất khi x nhỏ nhất hay A = \(-8-4\sqrt{6}\) khi x = -2

alibaba nguyễn
20 tháng 10 2016 lúc 12:34
Đề đúng không thế
jane28
20 tháng 10 2016 lúc 22:10

Đúng đây bạn ạ, thầy mình giao mà