pt 2x^2-(m-3)x+m=0 (m là tham số)tìm giá trị của m thỏa mãn|x1-x2|
Cho pt : x^2 - 2mx + m^2 - m = 0 (1) ( m là tham số ). Tìm các giá trị của tham số m để pt (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn x1^2 + x2^2 = 4 - 3x1x2
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
cho pt x2+2x+m-5=0 (1) vs m là tham số
a, giải pt (1) khi m=2
b, tìm các giá trị của m để pt (1) có 2 nghiệm x1;x2 thỏa mãn \(x_1^2x_2+x_1x_2^2=8\)
a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)
Để phương trình có hai nghiệm thì -4m+24>=0
=>-4m>=-24
hay m<=6
Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)
\(\Leftrightarrow-2\left(m-5\right)=8\)
=>m-5=-4
hay m=1(nhận)
Tìm tất cả các giá trị của tham số m để pt x^2-(m-1)*x+4*m^2-m=0 có hai nghiệm trái dấu X1, X2 thỏa mãn điều kiện
2*(X1+X2)+3*x1*x2<2
Xác định m để pt có 2 nghiệm x1,x2 thỏa mãn ĐK kèm theo:
x2 - (m + 2)x + 2 = 0 ( \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\))
Tìm giá trị của tham số m để pt x2 - 2(m+2)x + m2 + 4 = 0 có 2 nghiệm x1,x2 thỏa mãn hệ thức x1 + 2x2 = 7
Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.
Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.
Bước 3. Đối chiếu với điều kiện và kết luận bài toán.
xem tr sách của anh
Bài 1:
PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)
Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)
Tìm giá trị của tham số m để pt x2 - 2(m+2)x + m2 + 4 = 0 có 2 nghiệm x1,x2 thỏa mãn hệ thức x1 + 2x2 = 7
Để PT có 2 nghiệm \(\Leftrightarrow\Delta=\left[2\left(m+2\right)\right]^2-4\left(m^2+4\right)\ge0\)
\(\Leftrightarrow4m^2+16m+16-4m^2-16\ge0\\ \Leftrightarrow m\ge0\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m^2+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\left(1\right)\\x_1x_2=m^2+4\left(2\right)\\x_1+2x_2=7\left(3\right)\end{matrix}\right.\)
\(\left(3\right)-\left(1\right)=x_2=3-2m\)
Thay vào \(\left(1\right)\Leftrightarrow x_1=2\left(m+2\right)-x_2=2m+4-3+2m=4m+1\)
Thay vào \(\left(2\right)\Leftrightarrow\left(3-2m\right)\left(4m+1\right)=m^2+4\)
\(\Leftrightarrow10m+3-8m^2=m^2+4\\ \Leftrightarrow9m^2-10m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{9}\end{matrix}\right.\left(tm\right)\)
Cho phương trình x²- 2x + m - 1 = 0 với M là tham số a, Tìm tất cả giá trị của tham số m để phương trình có hai nghiệm phân biệt x1 x2 thỏa mãn x1²+x2²-3x1x2= 2m²+|m-3|
Δ=(-2)^2-4(m-1)
=-4m+4+4
=-4m+8
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
=>m<2
x1^2+x2^2-3x1x2=2m^2+|m-3|
=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9
TH1: m>=3
=>2m^2+m-3+5m-9=0
=>2m^2+6m-12=0
=>m^2+3m-6=0
=>\(m\in\varnothing\)
TH2: m<3
=>2m^2+3-m+5m-9=0
=>2m^2+4m-6=0
=>m^2+2m-3=0
=>(m+3)(m-1)=0
=>m=1 hoặc m=-3
Giá trị của tham số m để phương trình 4 x − m .2 x + 1 + 2 m = 0 có 2 nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 = 3 là:
A. m = 2
B. m = 3
C. m = 1
D. m = 4
Đáp án D
Ta có: 4 x − m .2 x + 1 + 2 m = 0 ⇔ 2 x 2 − 2 m .2 x + 2 m = 0
Giả thiết ⇔ Δ ' = m 2 − 2 m > 0 S = 2 m > 0 P = 2 m > 0 ⇔ m > 2
Khi đó: 2 x 1 + 2 x 2 = 2 m 2 x 1 .2 x 2 = 2 m ⇔ 2 x 1 + x 2 = 2 m ⇔ m = 4
x2-2(m-1)x+m2-4=0 (m là tham số). tìm giá trị của m để phương trình đã cho có 2 nghiệm phân biệt x1,x2 thỏa mãn x1(x1-3)+x2(x2-3)=6
\(x^2-2\left(m-1\right)x+m^2-4=0\)
\(\Delta=b^2-4ac=\left[-2\left(m-1\right)\right]^2-4\left(m^2-4\right)\)
\(=4\left(m^2-2m+1\right)-4\left(m^2-4\right)\)
\(=4m^2-8m+4-4m^2+16\)
\(=-8m+20\)
Để pt đã cho có 2 nghiệm pb \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow-8m+20>0\Leftrightarrow-8m>-20\Leftrightarrow m< \dfrac{5}{2}\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m^2-4\end{matrix}\right.\)
Ta có : \(x_1\left(x_1-3\right)+x_2\left(x_2-3\right)=6\)
\(\Leftrightarrow x_1^2-3x_1+x^2_2-3x_2=6\)
\(\Leftrightarrow\left(x_1^2+x_2^2\right)-3\left(x_1+x_1\right)-6=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)-6=0\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-4\right)-3\left(2m-2\right)-6=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+8-6m+6-6=0\)
\(\Leftrightarrow2m^2-14m+12=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=6\left(ktm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
Vậy m = 1 thì thỏa mãn đề bài.
Cho pt x2-2x-m=0. Tìm tất cả giá trị của m để pt có 2 nghiệm x1,x2 thỏa mãn x1<x2<2.
Để phương trình có 2 nghiệm phân biệt :
\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)
\(< =>4+4m>0\)
\(< =>4m>-4\)
\(< =>m>-1\)