Đáp án D
Ta có: 4 x − m .2 x + 1 + 2 m = 0 ⇔ 2 x 2 − 2 m .2 x + 2 m = 0
Giả thiết ⇔ Δ ' = m 2 − 2 m > 0 S = 2 m > 0 P = 2 m > 0 ⇔ m > 2
Khi đó: 2 x 1 + 2 x 2 = 2 m 2 x 1 .2 x 2 = 2 m ⇔ 2 x 1 + x 2 = 2 m ⇔ m = 4
Đáp án D
Ta có: 4 x − m .2 x + 1 + 2 m = 0 ⇔ 2 x 2 − 2 m .2 x + 2 m = 0
Giả thiết ⇔ Δ ' = m 2 − 2 m > 0 S = 2 m > 0 P = 2 m > 0 ⇔ m > 2
Khi đó: 2 x 1 + 2 x 2 = 2 m 2 x 1 .2 x 2 = 2 m ⇔ 2 x 1 + x 2 = 2 m ⇔ m = 4
Cho phương trình m ln 2 x + 1 - x + 2 - m ln x + 1 - x - 2 = 0 1 . Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn 0 < x 1 < 2 < 4 < x 2 là khoảng a ; + ∞ . Khi đó, a thuộc khoảng
A. (3,8;3,9)
B. (3,7;3,8)
C. (3,6;3,7)
D. (3,5;3,6)
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Tìm tất cả các giá trị của tham số m sao cho phương trình x 3 - 3 x 2 + ( 2 m - 2 ) x + m - 3 = 0 có ba nghiệm x 1 ; x 2 ; x 3 thỏa mãn x 1 < - 1 < x 2 < x 3 .
A . m > - 5
B . m < - 6
C . m ≤ - 5
D . m < - 5
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Có bao nhiêu giá trị nguyên của tham số m để phương trình m x 2 + 2 x 3 − 2 x 2 − 4 x + 2 = 0 có nghiệm thỏa mãn x ≤ − 3 ?
A. 4
B. Không có giá trị nào của m
C. Vô số giá trị của m
D. 6
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Số giá trị nguyên của tham số m thuộc đoạn [ - 2019 ; 2019 ] để phương trình x 2 + ( m + 2 ) x + 4 = ( m - 1 ) x 3 + 4 x có nghiệm là
A. 2011.
B. 2012.
C. 2013.
D. 2014.
Cho phương trình:
sin 3 x + 2 sin x + 3 = 2 c o s 3 x + m 2 c o s 3 x + m - 2 + 2 c o s 3 x + c o s 2 x + m .
Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm x ∈ 0 ; 2 π 3 ?
A. 2
B. 1
C. 3
D. 4