Cho a < b và c < d, hãy chứng tỏ rằng:
a+c < b+d
Cho 2 số hữu tỉ\(\dfrac{a}{b}\)và\(\dfrac{c}{d}\)(b>0,d>0). Chứng tỏ rằng:
a, Nếu\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)thì ad < bc
b. Nếu ad<bc thì \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)
a) \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\Leftrightarrow\dfrac{ad-bc}{bd}< 0\)\(\Leftrightarrow ad-bc< 0\) ( do bc>0) \(\Leftrightarrow ad< bc\) (đpcm)
b) \(ad< bc\) \(\Leftrightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\) \(\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)(đpcm)
Cho hai số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\)(a,b,c,d ϵ Z, b,d ≠ 0) Chứng tỏ rằng:
a, Nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc
b, Nếu ad < bc thì \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
Cho hai số hữu tỉ\(\dfrac{a}{b}\) và\(\dfrac{c}{d}\)(b>0,d>0).Chứng tỏ rằng:
a)Nếu\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)thì ad<bc
b)Nếu ad<bc thì\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)
Giúp mình với ạ mình cần gấp!!!
`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.
Cho (a + c)(b - d) = (a - c)(b + d)
Chứng minh rằng:a/b=c/d
\(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)
\(\Leftrightarrow ab-ad+bc-cd=ab+ad-bc-cd\)
\(\Leftrightarrow-ad+bc=ad-bc\)
\(\Leftrightarrow2bc=2ad\)
\(\Leftrightarrow bc=ad\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm)
\(\left(a+b\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\) (Tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm)
Cho các số hữu tỉ \(\dfrac{a}{b}\)và\(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\). Chứng minh rằng:
A) ad<bc
B) \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)< \(\dfrac{c}{d}\)
a) \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
b) Tham khảo:https://olm.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+h%E1%BB%AFu+t%E1%BB%89+a/b+v%C3%A0+c/d+v%E1%BB%9Bi+m%E1%BA%ABu+d%C6%B0%C6%A1ng+,+trong+%C4%91%C3%B3+a/b+%3Cc/d+.+c/m+r%E1%BA%B1ng+a)+a.d+%3Cb.c+b)+a/b+%3C+(a+c)/(b+d)%3Cc/d+&id=174343
a) Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{c}{d}\\b,d>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\Rightarrow ad< bc\)
b) Ta có: \(ad< bc\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)(do \(b,d>0\))
\(bc>ad\Rightarrow bc+cd>ad+cd\)
\(\Rightarrow c\left(b+d\right)>d\left(a+c\right)\Rightarrow\dfrac{c}{d}>\dfrac{a+c}{b+d}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho hai đường thẳng phân biệt a, b cùng vuông góc với đường thẳng c; d là một đường thẳng khác c và d vuông góc với a. Chứng minh rằng:
a) a // b; b) c // d; c) b\( \bot \)d
a) Vì \(c \bot a;c \bot b \Rightarrow a//b\) ( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
b) Vì \(a \bot c;a \bot d \Rightarrow c//d\)( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
c) Vì \(b \bot c;c//d \Rightarrow b \bot d\) ( đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia)
cho \(\dfrac{a}{b}< \dfrac{c}{d}\) trong đó b,d dương. Chứng minh rằng:
a) a.d < b.c b)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Lời giải:
a)
$\frac{a}{b}< \frac{c}{d}\Leftrightarrow \frac{ad}{bd}< \frac{bc}{bd}$
$\Leftrightarrow \frac{ad-bc}{bd}< 0$
Vì $bd>0$ với mọi $b,d>0$ nên $ad-bc< 0\Leftrightarrow ad< bc$
b) Từ phần a suy ra $bc-ad>0$
$\frac{a+c}{b+d}-\frac{a}{b}=\frac{b(a+c)-a(b+d)}{b(b+d)}=\frac{bc-ad}{b(b+d)}>0$ do $bc-ad>0$ và $b(b+d)>0$ với mọi $b,d>0$)
$\Rightarrow \frac{a+c}{b+d}>\frac{a}{b}$
Lại có:
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$ với mọi $b,d>0$
$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$
Ta có đpcm.
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\). Chứng minh rằng:
a) \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Cho a,b,c,d là số dương Chứng minh rằng:a/(b+c) + b/(c+d) + c/(d+a) + d/(a+b) =>2 theo phương pháp lớp 8