Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bánh táo
Xem chi tiết
Mun Amie
10 tháng 6 2021 lúc 10:39

a) \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\Leftrightarrow\dfrac{ad-bc}{bd}< 0\)\(\Leftrightarrow ad-bc< 0\) ( do bc>0) \(\Leftrightarrow ad< bc\) (đpcm)

b) \(ad< bc\) \(\Leftrightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\) \(\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)(đpcm)

Nguyễn Ngọc Linh Hương
Xem chi tiết
Hoàng Tường Vy
Xem chi tiết
Yeutoanhoc
2 tháng 6 2021 lúc 10:02

`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.

nguyễn minh hiền
Xem chi tiết
Trần Thanh Phương
3 tháng 8 2019 lúc 17:10

\(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)

\(\Leftrightarrow ab-ad+bc-cd=ab+ad-bc-cd\)

\(\Leftrightarrow-ad+bc=ad-bc\)

\(\Leftrightarrow2bc=2ad\)

\(\Leftrightarrow bc=ad\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm)

Quốc Đạt
3 tháng 8 2019 lúc 17:11

\(\left(a+b\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)

\(\Leftrightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\) (Tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm)

Xem chi tiết
ILoveMath
30 tháng 10 2021 lúc 15:53

a) \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

b) Tham khảo:https://olm.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+h%E1%BB%AFu+t%E1%BB%89+a/b+v%C3%A0+c/d+v%E1%BB%9Bi+m%E1%BA%ABu+d%C6%B0%C6%A1ng+,+trong+%C4%91%C3%B3+a/b+%3Cc/d+.+c/m+r%E1%BA%B1ng+a)+a.d+%3Cb.c+b)+a/b+%3C+(a+c)/(b+d)%3Cc/d+&id=174343

Lấp La Lấp Lánh
30 tháng 10 2021 lúc 16:01

a) Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{c}{d}\\b,d>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\Rightarrow ad< bc\)

b) Ta có: \(ad< bc\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)(do \(b,d>0\))

\(bc>ad\Rightarrow bc+cd>ad+cd\)

\(\Rightarrow c\left(b+d\right)>d\left(a+c\right)\Rightarrow\dfrac{c}{d}>\dfrac{a+c}{b+d}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
18 tháng 9 2023 lúc 17:59

a) Vì \(c \bot a;c \bot b \Rightarrow a//b\) ( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

b) Vì \(a \bot c;a \bot d \Rightarrow c//d\)( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)

c) Vì \(b \bot c;c//d \Rightarrow b \bot d\) ( đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia)

Nguyễn ngọc Khế Xanh
Xem chi tiết
Akai Haruma
1 tháng 4 2021 lúc 20:29

Lời giải:
a) 

$\frac{a}{b}< \frac{c}{d}\Leftrightarrow \frac{ad}{bd}< \frac{bc}{bd}$

$\Leftrightarrow \frac{ad-bc}{bd}< 0$

Vì $bd>0$ với mọi $b,d>0$ nên $ad-bc< 0\Leftrightarrow ad< bc$

b) Từ phần a suy ra $bc-ad>0$

$\frac{a+c}{b+d}-\frac{a}{b}=\frac{b(a+c)-a(b+d)}{b(b+d)}=\frac{bc-ad}{b(b+d)}>0$ do $bc-ad>0$ và $b(b+d)>0$ với mọi $b,d>0$)

$\Rightarrow \frac{a+c}{b+d}>\frac{a}{b}$

Lại có:
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$ với mọi $b,d>0$

$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$ 

Ta có đpcm.

Vân Nguyễn Thị
Xem chi tiết
Vân Nguyễn Thị
30 tháng 10 2021 lúc 20:23

Nhanh nha gianroi

Nguyễn Lê Phước Thịnh
30 tháng 10 2021 lúc 22:20

a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

Nguyễn Việt Thành
Xem chi tiết