Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho các số hữu tỉ \(\dfrac{a}{b}\)\(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\). Chứng minh rằng:

A) ad<bc

B) \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)\(\dfrac{c}{d}\)

ILoveMath
30 tháng 10 2021 lúc 15:53

a) \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

b) Tham khảo:https://olm.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+h%E1%BB%AFu+t%E1%BB%89+a/b+v%C3%A0+c/d+v%E1%BB%9Bi+m%E1%BA%ABu+d%C6%B0%C6%A1ng+,+trong+%C4%91%C3%B3+a/b+%3Cc/d+.+c/m+r%E1%BA%B1ng+a)+a.d+%3Cb.c+b)+a/b+%3C+(a+c)/(b+d)%3Cc/d+&id=174343

Lấp La Lấp Lánh
30 tháng 10 2021 lúc 16:01

a) Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{c}{d}\\b,d>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\Rightarrow ad< bc\)

b) Ta có: \(ad< bc\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)(do \(b,d>0\))

\(bc>ad\Rightarrow bc+cd>ad+cd\)

\(\Rightarrow c\left(b+d\right)>d\left(a+c\right)\Rightarrow\dfrac{c}{d}>\dfrac{a+c}{b+d}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)


Các câu hỏi tương tự
Bánh táo
Xem chi tiết
Nguyễn Ngọc Linh Hương
Xem chi tiết
Hoàng Tường Vy
Xem chi tiết
Đào Trí Bình
Xem chi tiết
Nguyễn Ngọc Linh Hương
Xem chi tiết
Nguyễn Ngọc
Xem chi tiết
Nguyễn Huy Trường Lưu
Xem chi tiết
sdhsdfgh
Xem chi tiết
Xem chi tiết