Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quỳnh Hương
Xem chi tiết
Bây Âu Thị
9 tháng 4 2016 lúc 21:33

D B C E N M A H

                                          a,   có góc ADM+DAM=90độ

                                             có góc DAM+DAB+BAH=90độ

                                             =>DAM+BAH=90 độ=>BAH=ADM

có DAM+ADM=90 độ

có BAH+ABH=90 độ

mà ADM=BAH=>ABH=DAM

xét tg DAM và tg BAH

     AB=AD

góc ADM=BAH     => tg DAM=tg ABH(g.c.g)

góc DAM=ABH

=> DM=AH(2 cạnh t/ứ)

b, nối D,E 

 xét tg NEA và tg AHC giống ý a, rùi có NE=AH mà DM=AH => DM=NE

gọi giao điểm của DE và NA là T => NTE=DTM(đối đỉnh)

Xét tg MDT và tg NET

NE=DM

NET=TDM(2 góc kia = nhau thì góc này =)                        => tgMTD=tgNET(g.c.g)

ENT=DMT(=90 độ)

=> DT=ET(2 cạnh t.ứ)=> MN đi qua trung điểm của DE

c, có EAC=DAB(=90độ)=> EAC+BAC=DAB+BAC(1)

DA=BA(2),     CA=EA(3)

từ 1,2 3 => 2 tg đó = nhau

ngoc bich 2
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
肖战Daytoy_1005
7 tháng 3 2021 lúc 22:15

Dễ nhưng dài nên lười đánh máy quá:")

a) Ta có: \(\widehat{BAH}+\widehat{ABH}=90^o\)

Mà \(\widehat{DAI}+\widehat{DAB}+\widehat{BAH}=180^O\)

\(\Leftrightarrow\widehat{DAI}+90^o+\widehat{BAH}=180^O\)

\(\Leftrightarrow\widehat{DAI}+\widehat{BAH}=90^o\)

=> \(\widehat{DAI}=\widehat{ABH}\)( cùng phụ BAH)

Xét ∆ABH và ∆DAI:

AB=AD(∆ABD vuông cân tại A)

\(\widehat{AHB}=\widehat{DIA}=90^o\)

\(\widehat{ABH}=\widehat{DAI}\left(cmt\right)\)

=>∆ABH=∆DAI (ch.gn)

b) Theo câu a: ∆ABH=∆DAI

=> AH=DI (2 cạnh t/ứ)(1)

Cmtt câu a ta được ∆AKE=∆CHA 

=> EK=AH (2 canh t/ứ) (2)

Từ (1) và (2) suy ra DI=EK

c) Gọi giao điểm của DE và HA là F

Xét ∆FID và ∆FKE:DI=K (cm ở câu b)

\(\widehat{FID}=\widehat{FKE}=90^o\)

\(\widehat{IFD}=\widehat{KFE}\) (2 góc đối đỉnh)

=> ∆FID=∆FKE (cgv.gn)

=> DF=EF (2 canh t/ứ)

=> F là trung điểm của DE 

=> AH cắt DE tại trung điểm của DE

Nguyễn Minh Hoàng
Xem chi tiết
nguyễn thảo linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2023 lúc 23:33

a: Vẽ DI,EK vuông góc AH

Xét ΔIDA và ΔHAB có

góc DIA=góc AHB

AD=AB

góc A1=góc ABH(=90 độ-góc A2)

=>ΔIDA=ΔHAB

=>ID=AH(1)

Xét ΔKAE và ΔHCA có

góc EKA=góc AHC

AE=AC

góc EAK=góc HCA

=>ΔKAE=ΔHCA

=>AH=EK=DI

Gọi giao của AH và DE là N

Xét ΔDIN và ΔKEN co

góc DIN=góc EKN

DI=EK

góc ENK=góc DNK

=>ΔDIN=ΔKEN

=>EN=DN

=>N là trung điểm của DE

b: Lấy F đối xứng A qua M

Xet ΔAMB và ΔFMC có

MA=MF

góc AMB=góc FMC

MB=MC

=>ΔAMB=ΔFMC

=>AB=CF và góc B=góc FCM

=>góc ACF=góc ACB+góc B=180 độ-góc BAC

Gọi giao của AM và DE là I

Xet ΔACF và ΔEAD có

AC=ED

CF=AD

góc EAD=góc ACF

=>ΔACF=ΔEAD

=>AF=DE

=>AM=1/2DE

ΔAMB=ΔFMC

=>góc BAM=góc MFC

ΔACF=ΔEAD

=>góc MFC=góc EDA

=>góc BAM=góc EDA

=>góc EDA+góc DAI=90 độ

=>AM vuông góc DE

Xem chi tiết

a) Ta có: gócDAB+gócBAC=gócDAC
               gócEAC+gócBAC=gócBAE
       MÀ gócDAB=gócEAC(=90độ)
=> gócDAC=gócBAE
xét tam giác DAC và tam giác BAE có:
AD=AB(GT)
AE=AC(GT)
gócDAC=gócBAE(cmt)
=>tam giác DAC =tam giác BAE(c.g.c) 
gọi giao điểm của AB và CD là F
      giao điểm của BE VÀ CD là I
Xét tam giác afd vuông tại A
=>gócADF+gócDFA=90độ
   mà gócADF= gócABI ( tam giác DAC =tam giác BAE  )
gócDFA=gócBFI
=> gócABI+gócBFI=90độ
=>gócFIB=90độ
=>CD vuông góc BE

b)từ a 
có KH,BE,CD là 3 đường cao của tam giácKBC nên chúng đồng quy tại I

a) Kẻ DM, EN vuông góc BC.

Xét :

_ AC = CE

 (góc có cạnh tương ứng vuông góc)

Nên chúng bằng nhau, suy ra: 

Tương tự: 

Do  (P là giao của CK và BE, quên vẽ) nên CNEP là tứ giác ntiếp 

Do đó 2 tam giác vuông 

Từ đó: 

2 tg này có 2 cặp cạnh tg ứng vuông góc là MD, BH và MC, KH nên cặp còn lại 

b) Từ a ta có KH, BE, CD là 3 đường cao , nên chúng đòng quy tại I.

a) Kẻ DM, EN vuông góc BC.

Xét :

 AC = CE

 

  (góc có cạnh tương ứng vuông góc)

Nên chúng bằng nhau, suy ra: 

Tương tự: 

Do  (P là giao của CK và BE, quên vẽ) nên CNEP là tứ giác ntiếp 

Do đó 2 tam giác vuông 

Từ đó: 

2 tg này có 2 cặp cạnh tg ứng vuông góc là MD, BH và MC, KH nên cặp còn lại 

b) Từ a ta có KH, BE, CD là 3 đường cao , nên chúng đòng quy tại I.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 7 2018 lúc 7:23

Ta có: ∠(HAC) +∠(CAE) +∠(EAN) =180o(kề bù)

Mà ∠(CAE) =90o⇒∠(HAC) +∠(EAN) =90o (4)

Trong tam giác vuông AHC, ta có:

∠(AHC) =90o⇒∠(HAC) +∠(HCA) =90o (5)

Từ (4) và (5) suy ra: ∠(HCA) =∠(EAN) ̂

Xét hai tam giác vuông AHC và ENA, ta có:

∠(AHC) =∠(ENA) =90o

AC = AE (gt)

∠(HCA) =∠(EAN) ( chứng minh trên)

Suy ra : ΔAHC= ΔENA(cạnh huyền, góc nhọn)

Vậy AH = EN (hai cạnh tương ứng)

Từ (3) và (6) suy ra: DM = EN

Vì DM ⊥ AH và EN ⊥ AH (giả thiết) nên DM // EN (hai đường thẳng cùng vuông góc với đường thẳng thứ ba)

Gọi O là giao điểm của MN và DE

Xét hai tam giác vuông DMO và ENO, ta có:

∠(DMO) =∠(ENO) =90o

DM= EN (chứng minh trên)

∠(MDO) =∠(NEO)(so le trong)

Suy ra : ΔDMO= ΔENO(g.c.g)

Do đó: DO = OE ( hai cạnh tương ứng).

Vậy MN đi qua trung điểm của DE

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Đoàn Ngọc Phương Uyên
Xem chi tiết
Nguyễn Trung Kiên
Xem chi tiết
Linh Linh
6 tháng 2 2019 lúc 21:24

a)kẻ DM,EN vuông góc BC
Xét tam giác AHC và tam giác CNE có:
AC=CE
góc AHC= góc CNE=90
góc ACH=góc CEN
suy ra AH=CN
HC=NE
tương tự:AH=BM
HB=MB
do góc CNE=góc CPE( p là giao của CK và BE)
suy ra góc NEB=HCK
Tam giác BNE=KHC
suy ra BN=Kn suy ra BC=KA
suy ra CM=KN
suy ra tam giác CMD=KHB
có 2 cặp góc vuông tương ứng
MD,BH và MC,KN
suy ra CD vuông BK
b)từ a 
có KH,BE,CD là 3 đường cao của tam giácKBC nên chúng đồng quy tại I

Nguyễn Trung Kiên
6 tháng 2 2019 lúc 21:27

Trả lời theo kiểu lớp 7 giùm mik

༺ℬøşş༻AFK_sasuke(box -nv...
12 tháng 3 2019 lúc 21:03

a) Ta có: gócDAB+gócBAC=gócDAC
               gócEAC+gócBAC=gócBAE
       MÀ gócDAB=gócEAC(=90độ)
=> gócDAC=gócBAE
xét tam giác DAC và tam giác BAE có:
AD=AB(GT)
AE=AC(GT)
gócDAC=gócBAE(cmt)
=>tam giác DAC =tam giác BAE(c.g.c) 
gọi giao điểm của AB và CD là F
      giao điểm của BE VÀ CD là I
Xét tam giác afd vuông tại A
=>gócADF+gócDFA=90độ
   mà gócADF= gócABI ( tam giác DAC =tam giác BAE  )
gócDFA=gócBFI
=> gócABI+gócBFI=90độ
=>gócFIB=90độ
=>CD vuông góc BE