Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC. Vẽ ở phía ngoài tam giác ABC các tam giác vuông tại A và ABD, ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng: MN đi qua trung điểm của DE

Cao Minh Tâm
30 tháng 7 2018 lúc 7:23

Ta có: ∠(HAC) +∠(CAE) +∠(EAN) =180o(kề bù)

Mà ∠(CAE) =90o⇒∠(HAC) +∠(EAN) =90o (4)

Trong tam giác vuông AHC, ta có:

∠(AHC) =90o⇒∠(HAC) +∠(HCA) =90o (5)

Từ (4) và (5) suy ra: ∠(HCA) =∠(EAN) ̂

Xét hai tam giác vuông AHC và ENA, ta có:

∠(AHC) =∠(ENA) =90o

AC = AE (gt)

∠(HCA) =∠(EAN) ( chứng minh trên)

Suy ra : ΔAHC= ΔENA(cạnh huyền, góc nhọn)

Vậy AH = EN (hai cạnh tương ứng)

Từ (3) và (6) suy ra: DM = EN

Vì DM ⊥ AH và EN ⊥ AH (giả thiết) nên DM // EN (hai đường thẳng cùng vuông góc với đường thẳng thứ ba)

Gọi O là giao điểm của MN và DE

Xét hai tam giác vuông DMO và ENO, ta có:

∠(DMO) =∠(ENO) =90o

DM= EN (chứng minh trên)

∠(MDO) =∠(NEO)(so le trong)

Suy ra : ΔDMO= ΔENO(g.c.g)

Do đó: DO = OE ( hai cạnh tương ứng).

Vậy MN đi qua trung điểm của DE

Giải sách bài tập Toán 7 | Giải sbt Toán 7


Các câu hỏi tương tự
Mai Hương
Xem chi tiết
PINK HELLO KITTY
Xem chi tiết
Ho Pham Phu An
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Vũ Thị Kim Ngân
Xem chi tiết
Cô gái lạnh lùng
Xem chi tiết
Lê Xuân Trường
Xem chi tiết
Thượng Hoàng Yến
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết