cho f(x)=ax2+bx c d ab de f(x)-f(x-1)=x tu do => cong thuc tinh 1+2+3+4+.........+n
a. Xac dinh a de nghiem cua da thuc f(x) = 2x-4 cung la nghiem cua da thuc g(x) = x^2 - ax +2b.
b. Cho f(x) = ax^3 + bx^2 + cx + d, trong do a; b; c; d la hang so va thoa man : b = 3a + c
Chung to rang : f(1) = f(-2)
bài 1:Xác định đa thức f(x) = a\(x^2\) + bx + c biết f(1) = 3, f(3) = 5, f(5) = 7
f(x)=ax^2+bx+c
=> f(1)= a + b + c
Mà f(1)= 3 nên a + b + c = 3 /1/
f(3) = 9a + 3b + c
Mà f(3)=5 => 9a + 3b + c = 5 /2/
f(5)= 25a + 5b + c
Mà f(5)=7 nên 25a + 5b + c = 7 /3/
Lấy /2/ - /1/, ta được:
8a + 2b = 2
<=> 2(4a + b) = 2
<=> 4a + b = 1 /4/
Lấy /3/ - /1/, ta được:
24a + 4 b = 4
<=> 4(6a + b) = 4
<=> 6a + b = 1 /5/
Lấy /5/ - /4/, ta được:
2a = 0
<=> a = 0
Thay a = 0 vào /4/, ta được:
4.0 + b = 1
<=> b = 1
Thay a = 0, b = 1 vào /1/, ta được:
0 + 1 + c = 3
<=> c = 2
=> a = 0, b = 1, c = 2
Vậy f(x) = 0.x^2 + x.1 + 2 = x + 2
Cho da thuc f(x)=a.x2+b.x+c Tinh f(1)?
tu do hay tinh tong cac he so cua da thuc g(x) sau khi rut gon:
g(x)=(2021x2022-2022x2021+2)2021.(2022x2021-2021x2022-2)2022
f(1)=a+b+c
g(1)=(2021-2022+2)^2021*(2022-2021-2)^2022=1
=>tổng các hệ số của g(x) là 1
Cho f(x) = ax2+bx+c, biết f(4) = f(-4). CMR: f(x) = f(-x)
\(f\left(4\right)=a.4^2+b.4+c=16a+4b+c\)
\(f\left(4\right)=a.\left(-4\right)^2+b.\left(-4\right)+c=16a-4b+c\)
\(f\left(4\right)=f\left(-4\right)\Rightarrow16a+4b+c=16a-4b+c\\ \Rightarrow16a+4b+c-16a+4b-c=0\\ \Rightarrow8b=0\\ \Rightarrow b=0\)
Ta có: \(f\left(x\right)=ax^2+bx+c=ax^2+0x+c=ax^2+c\) (1)
\(f\left(-x\right)=a\left(-x\right)^2+b\left(-x\right)+c=ax^2+0\left(-x\right)+c=ax^2+c\) (2)
Từ (1), (2)\(\Rightarrow f\left(x\right)=f\left(-x\right)\)
Cho hàm số y=f(x) = ax2+ bx+c. Biểu thức f(x+ 3) -3f( x+ 2) +3f( x+ 1) có giá trị bằng.
A. ax2-bx-c.
B. ax2+ bx-c.
C. ax2- bx+ c.
D. ax2+ bx+c.
Ta có:
f(x+3) = a(x+3)2+ b(x+3) +c=ax2+ (6a+b) x+ 9a+ 3b+c
f(x+2) = a(x+2)2+ b(x+2) +c=ax2+ (4a+b) x+ 4a+ 2b+c
f (x+1) = a(x+1)2+ b(x+1) +c=ax2+ (2a+b) x+ 2a+ 2b+c
Suy ra: (x+ 3) -3f( x+ 2) +3f( x+ 1)= ax2+ bx+ c
Chọn D.
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Cho đa thức f(x)=ax2+bx+c.
a)Xác định a,b,c biết a:b:c=(-1):3:(-4) và \(\dfrac{1}{2}\).f(2)=-2.
b)Tìm giá trị lớn nhất của đa thức h(x) biết:f(x)=h(x)+11x2+6x+2.
a) \(a:b:c=\left(-1\right):3:\left(-4\right)\Rightarrow-a=\dfrac{b}{3}=-\dfrac{c}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a\\c=4a\end{matrix}\right.\)
\(\dfrac{1}{2}f\left(2\right)=-2\)
\(\Rightarrow\dfrac{1}{2}.\left(4a+2b+c\right)=-2\)
\(\Rightarrow2a+b+\dfrac{c}{2}=-2\)
\(\Rightarrow2a-3a+\dfrac{4a}{2}=-2\)
\(\Rightarrow a=-2\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a=-3.\left(-2\right)=6\\c=4a=4.\left(-2\right)=-8\end{matrix}\right.\).
b) \(f\left(x\right)=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow-2x^2+6x-8=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow h\left(x\right)=-13x^2-10\)
\(\Rightarrow h\left(x\right)=-\left(13x^2+10\right)\le-\left(13+10\right)=-23\)
\(h\left(x\right)=-23\Leftrightarrow x=0\)
-Vậy \(h\left(x\right)_{max}=-23\)