Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Khánh Dung
Xem chi tiết
thu dinh
Xem chi tiết
Diệu Huyền
16 tháng 8 2019 lúc 17:43

f(x)=ax^2+bx+c
=> f(1)= a + b + c
Mà f(1)= 3 nên a + b + c = 3 /1/
f(3) = 9a + 3b + c
Mà f(3)=5 => 9a + 3b + c = 5 /2/
f(5)= 25a + 5b + c
Mà f(5)=7 nên 25a + 5b + c = 7 /3/
Lấy /2/ - /1/, ta được:
8a + 2b = 2
<=> 2(4a + b) = 2
<=> 4a + b = 1 /4/
Lấy /3/ - /1/, ta được:
24a + 4 b = 4
<=> 4(6a + b) = 4
<=> 6a + b = 1 /5/
Lấy /5/ - /4/, ta được:
2a = 0
<=> a = 0
Thay a = 0 vào /4/, ta được:
4.0 + b = 1
<=> b = 1
Thay a = 0, b = 1 vào /1/, ta được:
0 + 1 + c = 3
<=> c = 2
=> a = 0, b = 1, c = 2
Vậy f(x) = 0.x^2 + x.1 + 2 = x + 2

✿✿❑ĐạT̐®ŋɢย❐✿✿
16 tháng 8 2019 lúc 18:03

Tham khảo :

Xác định đa thức f(x) = ax^2 + bx + c biết f(1) = 3; f(3) = 5; f(5) = 7,Toán học Lớp 7,bà i tập Toán học Lớp 7,giải bà i tập Toán học Lớp 7,Toán học,Lớp 7

Đấu Phá Thương Khung
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 20:22

f(1)=a+b+c

g(1)=(2021-2022+2)^2021*(2022-2021-2)^2022=1

=>tổng các hệ số của g(x) là 1

Trần Ngọc Linh
Xem chi tiết
ILoveMath
29 tháng 1 2022 lúc 16:44

\(f\left(4\right)=a.4^2+b.4+c=16a+4b+c\)

\(f\left(4\right)=a.\left(-4\right)^2+b.\left(-4\right)+c=16a-4b+c\)

\(f\left(4\right)=f\left(-4\right)\Rightarrow16a+4b+c=16a-4b+c\\ \Rightarrow16a+4b+c-16a+4b-c=0\\ \Rightarrow8b=0\\ \Rightarrow b=0\)

Ta có: \(f\left(x\right)=ax^2+bx+c=ax^2+0x+c=ax^2+c\) (1)

\(f\left(-x\right)=a\left(-x\right)^2+b\left(-x\right)+c=ax^2+0\left(-x\right)+c=ax^2+c\) (2)

Từ (1), (2)\(\Rightarrow f\left(x\right)=f\left(-x\right)\) 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2017 lúc 11:21

Ta có:

f(x+3) = a(x+3)2+ b(x+3) +c=ax2+ (6a+b) x+ 9a+ 3b+c

f(x+2) = a(x+2)2+ b(x+2) +c=ax2+ (4a+b) x+ 4a+ 2b+c

f (x+1) = a(x+1)2+ b(x+1) +c=ax2+ (2a+b) x+ 2a+ 2b+c

Suy ra: (x+ 3) -3f( x+ 2) +3f( x+ 1)= ax2+ bx+ c

Chọn D.

uzumaki naruto
Xem chi tiết
uzumaki naruto
Xem chi tiết
Trần Quốc Anh
Xem chi tiết
Đăng Nguyễn Hải
Xem chi tiết
Trần Tuấn Hoàng
3 tháng 5 2022 lúc 20:01

a) \(a:b:c=\left(-1\right):3:\left(-4\right)\Rightarrow-a=\dfrac{b}{3}=-\dfrac{c}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}b=-3a\\c=4a\end{matrix}\right.\)

\(\dfrac{1}{2}f\left(2\right)=-2\)

\(\Rightarrow\dfrac{1}{2}.\left(4a+2b+c\right)=-2\)

\(\Rightarrow2a+b+\dfrac{c}{2}=-2\)

\(\Rightarrow2a-3a+\dfrac{4a}{2}=-2\)

\(\Rightarrow a=-2\)

\(\Rightarrow\left\{{}\begin{matrix}b=-3a=-3.\left(-2\right)=6\\c=4a=4.\left(-2\right)=-8\end{matrix}\right.\).

b) \(f\left(x\right)=h\left(x\right)+11x^2+6x+2\)

\(\Rightarrow-2x^2+6x-8=h\left(x\right)+11x^2+6x+2\)

\(\Rightarrow h\left(x\right)=-13x^2-10\)

\(\Rightarrow h\left(x\right)=-\left(13x^2+10\right)\le-\left(13+10\right)=-23\)

\(h\left(x\right)=-23\Leftrightarrow x=0\)

-Vậy \(h\left(x\right)_{max}=-23\)