Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm,BC=10cm .BM là đường phân giác.E và F là các hình chiếu A và C trên BM a) Tính AM b) CM: tam giác ABM và tam giác EBA đồng dạng c) Tính BE d) CM: BE.BF=AB.AC và tính BF
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, BM là đường phân giác.E và F là các hình chiếu A và C trên BM
a) Tính độ dài cạnh BC, AM
b) CM: AB^2=BE.BM
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔBAC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)
=>\(\dfrac{AM}{6}=\dfrac{CM}{10}\)
=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)
mà AM+CM=AC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{8}{8}=1\)
=>AM=3*1=3(cm)
b: Xét ΔBEA vuông tại E và ΔBAM vuông tại A có
\(\widehat{EBA}\) chung
Do đó: ΔBEA đồng dạng với ΔBAM
=>\(\dfrac{BE}{BA}=\dfrac{BA}{BM}\)
=>\(BA^2=BE\cdot BM\)
cho tam giác ABC có AB=6cm , AB=8cm , BC=10cm ; đường cao AH gọi D,E thứ tự là hình chiếu của H trên AB và AC . Chúng minh : tam ABC vuông tại A . Tính góc B , góc C ? . Chứng minh tam giác ADE đồng dạng tam giác ACB
a, BC=BH+HC=8BC=BH+HC=8
Áp dụng HTL:
⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)
b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)
Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tanAKB^=ABAK=423=233≈tan490
⇒ˆAKB≈490
cho tam giác ABC vuông tại A. Tia phân giác BM ( M thuộc AC )
a) cho AB=6cm; AC=8cm. Tính BC
b) kẻ MK vuông góc với BC tại K. Chứng minh tam giác ABM=tam giác KBM
c) so sánh AM và CM?
d) Tia KM cắt tia BA ở D. chứng minh AK//DC
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có
BM chung
góc ABM=góc KBM
=>ΔBAM=ΔBKM
c: AM=MK
MK<MC
=>AM<MC
d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có
MA=MK
góc AMD=góc KMC
=>ΔMAD=ΔMKC
=>AD=KC
Xét ΔBDC có BA/AD=BK/KC
nên AK//DC
cho tam giác ABC vuông tại A, đường cao AH, biết AB = 6cm AC =8cm. a) CM: tam giác BAH đồng dạng với tam giác BCA. tính BC,BH b) gọi M là trung điểm của AB, N là hình chiếu của H trên AC. CM HN^2=CN*AN c) gọi I là giao điểm của MH và AC. CM CI*AB=2CN*MI
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
b: ΔHAC vuông tại H có HN vuông góc AC
nên HN^2=NA*NC
Cho tam giác ABC vuông tại A có AB = 6cm ; AC= 8cm . Đường cao AH và phân giác BD cắt nhau tại I ( H trên BC và D trên AC ) .
a) Tính độ dài AD , DC
b) Cm : tam giác ABC đồng dạng với tam giác HBA và AB^2 = BH.BC
c) Cm : tam giác ABI đồng dạng với tam giác CBD
d) Cm : \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
( Giải giúp mình câu c với d ạ cảm ơn ^^ )
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=100\)
hay BC=10cm
Xét ΔABC có BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
hay \(AB^2=BH\cdot BC\)
c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)
Xét Δ ABI và Δ CBD có:
\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)
\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)
\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)
d) Xét ΔABH có:
BI là tia phân giác của \(\widehat{ABH}\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)
Xét ΔABC có:
BD là tia phân giác của \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)
Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔABI\(\sim\)ΔCBD
d: Xét ΔBHA có BI là đường phân giác ứng với cạnh AH
nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)
Xét ΔBAC có BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)
Ta có: \(AB^2=BH\cdot BC\)
nên \(\dfrac{BH}{BA}=\dfrac{AB}{BC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
Cho tam giác ABC, có AB = 6cm, AC = 8cm, BC = 10cm. Q là hình chiếu của A trên cạnh BC
a. Cm tam giác ABC vuông
b. Tính BQ biết AQ = 4,8cm
c. Tia phan giác của góc B cắt AC tại D. Vẽ H là hình chiếu của D trên BC. Cm tam giác ABD = tam giác HBD
d. So sánh HQ và HC
c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2=AQ^2+BQ^2\)
\(\Leftrightarrow BQ^2=AB^2-AQ^2=6^2-4.8^2=12.96\)
hay BQ=3,6(cm)
Vậy: BQ=3,6cm
Cho tam giác có AB=10cm,AC=20cm.Tia phân giác của góc BAC cắt BC tại D. a)Tính BD/CD b) Trên cạnh AC lấy điểm M sao cho đoạn AM=5cm.Chứng minh tam giác AMB và tam giác ABC đồng dạng c) Nếu cho BC là 1 đơn vị cm bất kì,vậy tính BM được không
a: BD/CD=AB/AC=1/2
b: Xét ΔAMB và ΔABC có
AM/AB=AB/AC
góc MAB=góc BAC
=>ΔAMB đồng dạng với ΔABC
Cho tam giác ABC vuông tại A (AC > AB). Đường cao AH, đường phân giác AM. 1) Chứng minh: tam giác ABC ഗ tam giác HAC. 2) Cho AB = 15 cm; AC = 20 cm. Tính BM, CM. 3) Gọi điểm D, E lần lượt là hình chiếu vuông góc của điểm H trên AB và AC. Chứng minh: tam giác ADE ഗ tam giác ACB
1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc ACB chung
Do đó: ΔABC\(\sim\)ΔHAC
2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
=>BM/3=CM/4
Áp dụng tính chất của dãy tr số bằng nhau, ta được:
\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)
Do đó: BM=75/7(cm); CM=100/7(cm)
Cho tam giác ABC vuông tại A (AC > AB). Đường cao AH, đường phân giác AM. 1) Chứng minh: tam giác ABC ഗ tam giác HAC. 2) Cho AB = 15 cm; AC = 20 cm. Tính BM, CM. 3) Gọi điểm D, E lần lượt là hình chiếu vuông góc của điểm H trên AB và AC. Chứng minh: tam giác ADE ഗ tam giác ACB