a: Xét ΔABC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
=>\(\dfrac{AM}{6}=\dfrac{CM}{10}\)
=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)
mà AM+CM=AC=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{8}{8}=1\)
=>\(AM=3\cdot1=3\left(cm\right)\)
b: Xét ΔABM vuông tại A và ΔEBA vuông tại E có
\(\widehat{EBA}\) chung
Do đó: ΔABM đồng dạng với ΔEBA
c: Ta có: ΔABM vuông tại A
=>\(BM^2=BA^2+AM^2\)
=>\(BM^2=6^2+3^2=45\)
=>\(BM=3\sqrt{5}\left(cm\right)\)
Xét ΔBAM vuông tại A có AE là đường cao
nên \(BE\cdot BM=BA^2\)
=>\(BE\cdot3\sqrt{5}=6^2=36\)
=>\(BE=\dfrac{36}{3\sqrt{5}}=\dfrac{12}{\sqrt{5}}\left(cm\right)\)