c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2=AQ^2+BQ^2\)
\(\Leftrightarrow BQ^2=AB^2-AQ^2=6^2-4.8^2=12.96\)
hay BQ=3,6(cm)
Vậy: BQ=3,6cm