Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Lê Anh
Xem chi tiết
Vũ Lê Anh
Xem chi tiết
Phan Phạm
Xem chi tiết
vanhuyen2001
Xem chi tiết
Nguyễn Khánh Vũ
Xem chi tiết
Bùi anh tuấn
Xem chi tiết
My Love bost toán
22 tháng 11 2018 lúc 19:09

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

My Love bost toán
22 tháng 11 2018 lúc 19:20

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

Jctdhsdtf
23 tháng 11 2018 lúc 20:05

Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko 

dbrby
Xem chi tiết
The Neil
16 tháng 8 2019 lúc 22:57

A=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\)

=>\(\frac{3}{2}\)-A=\(\frac{1}{2}-\frac{a}{3a+b+c}+\frac{1}{2}-\frac{b}{3b+a+c}+\frac{1}{2}-\frac{c}{3c+a+b}\)

<=>\(\frac{3}{2}\)-A=\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\)

ta lại có

\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\ge\left(a+b+c\right)\left(\frac{\left(1+1+1\right)^2}{6a+2b+2c+6b+2a+2c+6c+2a+2b}\right)=\frac{9}{10}\)<=>\(\frac{3}{2}-\)A\(\ge\frac{9}{10}\)<=>A\(\le\frac{3}{2}-\frac{9}{10}=\frac{3}{5}\)

dấu "=" xảy ra <=>a=b=c

Haa My
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 8 2020 lúc 22:32

1.

Chú ý rằng:

\(\left(a^3-3a^2+2\right)^2=\left(a^2-2a-2\right)^3+3\left(a^2-2a-2\right)^2\)

Bạn sẽ giải quyết được bài toàn

2.

\(\Leftrightarrow8a^3-6a+\left(2b-2\right)\sqrt{2b+1}=0\)

\(\Leftrightarrow\left(2a\right)^3-3.\left(2a\right)+\left(2a+1\right)\sqrt{2a+1}-3\sqrt{2a+1}=0\)

Đặt \(\left\{{}\begin{matrix}2a=x\\\sqrt{2b+1}=y\end{matrix}\right.\) rồi ghép nhân tử là xong

3.

\(8a^3+2a+\left(2b-6\right)\sqrt{5-2b}=0\)

\(\Leftrightarrow\left(2a\right)^3+2a-\left(5-2b\right)\sqrt{5-2b}-\sqrt{5-2b}=0\)

Đặt \(\left\{{}\begin{matrix}2a=x\\\sqrt{5-2b}=y\end{matrix}\right.\)

4.

Câu này ko biết làm kiểu lớp 9, lớp 11 thì được :(

Trước hết từ điều kiện biện luận được \(a>0\)

Khi đó chia 2 vế cho \(a^2\)

\(b\sqrt{1+b^2}-\frac{1}{a^2}\sqrt{1+a^2}=b-\frac{1}{a}\)

\(\Leftrightarrow b\sqrt{1+b^2}-b=\frac{1}{a^2}\sqrt{1+a^2}-\frac{1}{a}\)

\(\Leftrightarrow b\sqrt{1+b^2}-b=\frac{1}{a}\sqrt{1+\frac{1}{a^2}}-\frac{1}{a}\)

Hàm đặc trưng \(f\left(x\right)=x\sqrt{1+x^2}-x\) đồng biến trên R \(\Rightarrow b=\frac{1}{a}\)

Dưa Hấu
Xem chi tiết