§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dbrby

cho a,b,c > 0 . Cmr: \(A=\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\le\frac{3}{5}\)

The Neil
16 tháng 8 2019 lúc 22:57

A=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\)

=>\(\frac{3}{2}\)-A=\(\frac{1}{2}-\frac{a}{3a+b+c}+\frac{1}{2}-\frac{b}{3b+a+c}+\frac{1}{2}-\frac{c}{3c+a+b}\)

<=>\(\frac{3}{2}\)-A=\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\)

ta lại có

\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\ge\left(a+b+c\right)\left(\frac{\left(1+1+1\right)^2}{6a+2b+2c+6b+2a+2c+6c+2a+2b}\right)=\frac{9}{10}\)<=>\(\frac{3}{2}-\)A\(\ge\frac{9}{10}\)<=>A\(\le\frac{3}{2}-\frac{9}{10}=\frac{3}{5}\)

dấu "=" xảy ra <=>a=b=c


Các câu hỏi tương tự
dbrby
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Diệu Anh Bùi
Xem chi tiết
Pool Tran
Xem chi tiết
muon tim hieu
Xem chi tiết
Nhàn Nguyễn
Xem chi tiết
Trung Nguyen
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết