cho a,b,c > 0 thỏa mãn a+b+c ≤ 2018. Cmr:
\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^3}+\frac{5c^3-a^3}{ca+3c^3}\le2018\)
C/m các BĐT sau :
\(1.a^3-3a+4\ge b^3-3b
\)
\(2,\frac{1}{\frac{1}{a+c}+\frac{1}{b+d}}\ge\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{c}+\frac{1}{d}}\) với a, b, c, d>0
\(3,a^3+b^3\ge\frac{1}{4};a+b\ge1\)
4, \(a^3+b^3\le a^4+b^4;a+b\ge2\)
5, \(\left(a+b\right)\left(a^3+b^3\right)\left(a^5+b^5\right)\le4\left(a^9+b^9\right);a,b\ge0\)
6, \(\frac{c+a}{\sqrt{a^2+c^2}}\ge\frac{c+b}{\sqrt{c^2+b^2}};a>b>0,c>\sqrt{ab}\)
Các bn làm đc bài nào thì giúp mk với, cảm ơn ạ !
1/ cho a,b,c >0
a+b+c=3:
chứng minh : \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\) ≥ \(\frac{3}{4}\)
2/a,b,c>0
a+b+c=6
chứng minh : S= \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ≤ 6
Cho a;b;c>0.CMR:
\(\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}+\sqrt[3]{\frac{b^2+ca}{abc\left(c^2+a^2\right)}}+\sqrt[3]{\frac{c^2+ab}{abc\left(a^2+b^2\right)}}\ge\frac{9}{a+b+c}\)
cho a , b , c >0. Chứng minh các bất đẳng thức :
1, ab + bc + ca \(\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3, \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
4, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
5, \(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp BĐT Cô-si
1. Cho a,b,c \(\ge\) 0. Chứng minh các BĐT sau
a. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
b. \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
c. \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{c}{c+a}\le\frac{a+b+c}{2}\)
d. \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
cho a,b,c > 0 thỏa mãn abc =1. Cmr: \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\le\frac{3}{2}\)
choa,b,c > 0. Cmr: \(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ca}}\)
a,b,c>0
CMR \(\dfrac{5b^2-a^3}{ab+3b^3}+\dfrac{5c^2-b^3}{cb+3c^2}+\dfrac{5a^2-c^3}{ac+3a^2}\le a+b+c\)