cho a,b,c > 0 thỏa mãn a+b+c ≤ 2018. Cmr:
\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^3}+\frac{5c^3-a^3}{ca+3c^3}\le2018\)
C/m BĐT : \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
\(\frac{c+a}{\sqrt{a^2+c^2}}\ge\frac{c+b}{\sqrt{c^2+b^2}};a>b>0,c>\sqrt{ab}\)
Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\). Chứng minh rằng :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
Bài 1: Cho x, y, z > 0; x + y + z = 1. Tìm GTNN của biểu thức:
P = \(\dfrac{x}{x+1}\)+\(\dfrac{y}{y+1}\)+\(\dfrac{Z}{Z+1}\)
Bài 2: cho a, b, c > 0. Chứng minh rằng:
\(\dfrac{ab}{a+3b+2c}\) + \(\dfrac{bc}{b+3c+2a}\) + \(\dfrac{ac}{c+3a+2b}\) ≤ \(\dfrac{a+b+c}{6}\)
Bài 3: Cho a, b, c > 0 thỏa mãn abc = 1. Tìm GTLN của biểu thức:
P = \(\dfrac{1}{a^2+2b^2+3}\) + \(\dfrac{1}{b^2+2c^2+3}\) + \(\dfrac{1}{c^2+2a^2+3}\)
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
Cho a,b,c \(\ge0\). CMR:
\(\dfrac{a^3b}{a^4+a^2b^2+b^4}+\dfrac{b^3c}{b^4+b^2c^2+c^4}+\dfrac{c^3a}{c^4+c^2a^2+a^4}\le1\)
\(a,b,c>0.CMR:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
Cho 3 số thực dương a, b, c thỏa mãn: \(2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{3}\). Tìm giá trị lớn nhất của biểu thức
P = \(\dfrac{1}{\sqrt{6a^2+3b^2}}+\dfrac{1}{\sqrt{6b^2+3c^2}}+\dfrac{1}{\sqrt{6c^2+3a^2}}\)