Bài 1: Cho x, y, z > 0; x + y + z = 1. Tìm GTNN của biểu thức:
P = \(\dfrac{x}{x+1}\)+\(\dfrac{y}{y+1}\)+\(\dfrac{Z}{Z+1}\)
Bài 2: cho a, b, c > 0. Chứng minh rằng:
\(\dfrac{ab}{a+3b+2c}\) + \(\dfrac{bc}{b+3c+2a}\) + \(\dfrac{ac}{c+3a+2b}\) ≤ \(\dfrac{a+b+c}{6}\)
Bài 3: Cho a, b, c > 0 thỏa mãn abc = 1. Tìm GTLN của biểu thức:
P = \(\dfrac{1}{a^2+2b^2+3}\) + \(\dfrac{1}{b^2+2c^2+3}\) + \(\dfrac{1}{c^2+2a^2+3}\)
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Bài 3:
Áp dụng BĐT AM-GM:
\(P=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
\(P=\frac{1}{(a^2+b^2)+(b^2+1)+2}+\frac{1}{(b^2+c^2)+(c^2+1)+2}+\frac{1}{(c^2+a^2)+(a^2+1)+2}\)
\(\leq \frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+1}+\frac{1}{ac+2a+2}\)
\(\Leftrightarrow P\leq \frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
Gọi biểu thức trong ngoặc lớn là $N$
Do $abc=1$ nên ta có:
\(N=\frac{ac}{ab.ac+b.ac+ac}+\frac{a}{bc.a+c.a+a}+\frac{1}{ac+a+1}\)
\(=\frac{ac}{a+1+ac}+\frac{a}{1+ca+a}+\frac{1}{ca+a+1}=\frac{ac+a+1}{ac+a+1}=1\)
DO đó: \(P\leq \frac{1}{2}N=\frac{1}{2}\)
Vậy \(P_{\max}=\frac{1}{2}\). Dấu bằng xảy ra khi $a=b=c=1$