Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.
Chứng minh rằng:
\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\)
Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:
1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)
2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\) ≥ \(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)
Bài 3: Cho a, b,c ,d > 0. CMR:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\) ≥ \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)
Bài 4: tìm giá trị nhỏ nhất của biểu thức:
A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1
B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0
Bài 5: Với x > 0, chứng minh rằng:
( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3
Giúp mk với, mai mk phải kiểm tra rồi!!
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
Bài 1 : Áp dụng bđt Cauchy ta có : \(\sqrt{1+x^3+y^3}\ge\sqrt{3\sqrt[3]{x^3y^3}}=\sqrt{3xy}\)
\(\Rightarrow\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3xy}}{xy}\)
Biến đổi tương tự cho 2 vế còn lại ta có \(VT\ge\dfrac{\sqrt{3xy}}{xy}+\dfrac{\sqrt{3xz}}{xz}+\dfrac{\sqrt{3yz}}{yz}=a\)
Áp dụng bđt Cauchy cho 3 số thực dương ta có : \(a\ge3\sqrt[3]{\dfrac{\sqrt{27x^2y^2z^2}}{x^2y^2z^2}}=3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)
\(\Rightarrow VT\ge3\sqrt{3}\left(đpcm\right)\)
Bài 5:
Áp dụng BĐT Cauchy cho $3$ số:
\((x+2)^2+\frac{2}{x+2}=(x+2)^2+\frac{1}{x+2}+\frac{1}{x+2}\geq 3\sqrt[4]{(x+2)^2.\frac{1}{x+2}.\frac{1}{x+2}}=3\)
Ta có đpcm
Dấu bằng xảy ra khi \((x+2)^2=\frac{1}{x+2}\Leftrightarrow x=-1\) (loại do $x>0$)
Do đó dấu bằng không xảy ra, hay \((x+2)^2+\frac{2}{x+2}>3\)
Bài 3)
Áp dụng BĐT Cauchy cho $5$ số ta có:
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\geq 5\sqrt[5]{\frac{1}{b^{15}}}=\frac{5}{b^3}\)
Tương tự:
\(\frac{b^2}{c^5}+\frac{b^2}{c^5}+\frac{b^2}{c^5}+\frac{1}{b^3}+\frac{1}{b^3}\geq \frac{5}{c^3}\)
\(\frac{c^2}{d^5}+\frac{c^2}{d^5}+\frac{c^2}{d^5}+\frac{1}{c^3}+\frac{1}{c^3}\geq \frac{5}{d^3}\)
\(\frac{d^2}{a^5}+\frac{d^2}{a^5}+\frac{d^2}{a^5}+\frac{1}{d^3}+\frac{1}{d^3}\geq \frac{5}{a^3}\)
Cộng các BĐ vừa thu được:
\(\Rightarrow 3\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)+2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)\geq 5\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)\)
\(\Rightarrow \frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\geq \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c=d$