§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lông_Xg

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

Akai Haruma
17 tháng 5 2018 lúc 0:04

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

Akai Haruma
17 tháng 5 2018 lúc 0:11

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

Kuro Kazuya
17 tháng 5 2018 lúc 0:41

Bài 1 : Áp dụng bđt Cauchy ta có : \(\sqrt{1+x^3+y^3}\ge\sqrt{3\sqrt[3]{x^3y^3}}=\sqrt{3xy}\)

\(\Rightarrow\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3xy}}{xy}\)

Biến đổi tương tự cho 2 vế còn lại ta có \(VT\ge\dfrac{\sqrt{3xy}}{xy}+\dfrac{\sqrt{3xz}}{xz}+\dfrac{\sqrt{3yz}}{yz}=a\)

Áp dụng bđt Cauchy cho 3 số thực dương ta có : \(a\ge3\sqrt[3]{\dfrac{\sqrt{27x^2y^2z^2}}{x^2y^2z^2}}=3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

\(\Rightarrow VT\ge3\sqrt{3}\left(đpcm\right)\)

Akai Haruma
17 tháng 5 2018 lúc 1:05

Bài 5:

Áp dụng BĐT Cauchy cho $3$ số:

\((x+2)^2+\frac{2}{x+2}=(x+2)^2+\frac{1}{x+2}+\frac{1}{x+2}\geq 3\sqrt[4]{(x+2)^2.\frac{1}{x+2}.\frac{1}{x+2}}=3\)

Ta có đpcm

Dấu bằng xảy ra khi \((x+2)^2=\frac{1}{x+2}\Leftrightarrow x=-1\) (loại do $x>0$)

Do đó dấu bằng không xảy ra, hay \((x+2)^2+\frac{2}{x+2}>3\)

Bài 3)

Áp dụng BĐT Cauchy cho $5$ số ta có:

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\geq 5\sqrt[5]{\frac{1}{b^{15}}}=\frac{5}{b^3}\)

Tương tự:

\(\frac{b^2}{c^5}+\frac{b^2}{c^5}+\frac{b^2}{c^5}+\frac{1}{b^3}+\frac{1}{b^3}\geq \frac{5}{c^3}\)

\(\frac{c^2}{d^5}+\frac{c^2}{d^5}+\frac{c^2}{d^5}+\frac{1}{c^3}+\frac{1}{c^3}\geq \frac{5}{d^3}\)

\(\frac{d^2}{a^5}+\frac{d^2}{a^5}+\frac{d^2}{a^5}+\frac{1}{d^3}+\frac{1}{d^3}\geq \frac{5}{a^3}\)

Cộng các BĐ vừa thu được:

\(\Rightarrow 3\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)+2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)\geq 5\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)\)

\(\Rightarrow \frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\geq \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=d$


Các câu hỏi tương tự
Lông_Xg
Xem chi tiết
Trường Phạm
Xem chi tiết
Phạm Lợi
Xem chi tiết
SA Na
Xem chi tiết
Phạm Thúy Vy
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Neet
Xem chi tiết
Lông_Xg
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết