1) Cho \(a^3-3a^2+2=\sqrt{b^3+3b^2}\) với \(a\ge2\) , cmr \(a^2-2a=b+2\)
2) Cho \(4a^3-3a+\left(b-1\right)\sqrt{2b+1}=0\) với \(-\frac{1}{2}\le0\) , cmr \(\sqrt{2b+1}+2a=0\)
3) Cho \(\left(4a^2+1\right)a+\left(b-3\right)\sqrt{5-2b}=0\) , cmr \(2b+4a^2=5\) với \(a\ge0\)
4) Cho \(a^2b\sqrt{1+b^2}-\sqrt{1+a^2}=a^2b-a\) với \(ab\ge0\) , cmr \(ab=1\)
- Mng giúp em với ạ, em cảm ơn.
1.
Chú ý rằng:
\(\left(a^3-3a^2+2\right)^2=\left(a^2-2a-2\right)^3+3\left(a^2-2a-2\right)^2\)
Bạn sẽ giải quyết được bài toàn
2.
\(\Leftrightarrow8a^3-6a+\left(2b-2\right)\sqrt{2b+1}=0\)
\(\Leftrightarrow\left(2a\right)^3-3.\left(2a\right)+\left(2a+1\right)\sqrt{2a+1}-3\sqrt{2a+1}=0\)
Đặt \(\left\{{}\begin{matrix}2a=x\\\sqrt{2b+1}=y\end{matrix}\right.\) rồi ghép nhân tử là xong
3.
\(8a^3+2a+\left(2b-6\right)\sqrt{5-2b}=0\)
\(\Leftrightarrow\left(2a\right)^3+2a-\left(5-2b\right)\sqrt{5-2b}-\sqrt{5-2b}=0\)
Đặt \(\left\{{}\begin{matrix}2a=x\\\sqrt{5-2b}=y\end{matrix}\right.\)
4.
Câu này ko biết làm kiểu lớp 9, lớp 11 thì được :(
Trước hết từ điều kiện biện luận được \(a>0\)
Khi đó chia 2 vế cho \(a^2\)
\(b\sqrt{1+b^2}-\frac{1}{a^2}\sqrt{1+a^2}=b-\frac{1}{a}\)
\(\Leftrightarrow b\sqrt{1+b^2}-b=\frac{1}{a^2}\sqrt{1+a^2}-\frac{1}{a}\)
\(\Leftrightarrow b\sqrt{1+b^2}-b=\frac{1}{a}\sqrt{1+\frac{1}{a^2}}-\frac{1}{a}\)
Hàm đặc trưng \(f\left(x\right)=x\sqrt{1+x^2}-x\) đồng biến trên R \(\Rightarrow b=\frac{1}{a}\)