Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nghiêm Thị Nhân Đức

1, cho a,b,c là các số thực dương chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(a+2c\right)}\)

2,cho x,y,z thỏa mãn x+y+z=5 và xy+yz+xz=8 chứng minh rằng \(1\le x\le\frac{7}{3}\)

3, cho a,b,c>0 chứng minh rằng\(\frac{a^2}{2a^2+\left(b+c-a\right)^2}+\frac{b^2}{2b^2+\left(b+c-a\right)^2}+\frac{c^2}{2c^2+\left(b+a-c\right)^2}\le1\)

4,cho a,b,c là các số thực bất kỳ chứng minh rằng \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\left(ab+bc+ac-1\right)^2\)

5, cho a,b,c > 1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)chứng minh rằng \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)

Copxki Minh
2 tháng 12 2020 lúc 22:25

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

Khách vãng lai đã xóa

Các câu hỏi tương tự
Diệu Linh
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Kem Bánh
Xem chi tiết
Ngọc Hà
Xem chi tiết
Anna Trần
Xem chi tiết
minh nguyen
Xem chi tiết
hỏa quyền ACE
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
cielxelizabeth
Xem chi tiết