so sánh
399 và 1121
so sánh
575 và 760 339 và 1121
Ta có:
\(5^{75}=\left(5^5\right)^{15}=3125^{15}\)
\(7^{60}=\left(7^4\right)^{15}=2401^{15}\)
Mà: \(3125^{15}>2401^{15}\)
\(\Rightarrow5^{75}>7^{60}\)
_______________
Ta có:
\(3^{39}< 3^{42}\); \(3^{42}=\left(3^6\right)^7=729^7\)
\(11^{21}=\left(11^3\right)^7=1331^7\)
Mà: \(729^7< 1331^7\)
\(\Rightarrow3^{42}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
a) \(5^{75}=\left(5^5\right)^{15}=3125^{15}\)
\(7^{60}=\left(7^4\right)^{15}=2401^{15}\)
mà \(2401^{15}< 3125^{15}\)
\(\Rightarrow5^{75}>7^{60}\)
b) \(3^{39}=\left(3^{13}\right)^3=1594323^3;11^{21}=\left(11^7\right)^3=19487171^3\)
mà \(19487171^3>1594323^3\)
\(\Rightarrow3^{39}< 7^{21}\)
575 = (55)15= 312515
760= (74)15 = 240115
Vì: 312515 > 240115 (3125 > 2401) => 575 > 760
so sánh:
a) 536 và 1124
b) 32n và 23n
c) 19920 và 200315
d) 399 và 1121
a) 536 và 1124
Ta có: 536= (53)12=12512 (1)
1124=(112)12=12112 (2)
Từ (1) và (2) => 536>1124
tương tự.....
Đáp án là :
câu 20 :625 < 1257
câu 21 :536 > 1124
câu 22 :32n < 23n
câu 23 :523 < 6.522
câu 24 :1124 <19920
câu 25 :399 > 112
a) Ta có: \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
mà \(125^{12}>121^{12}\left(125>121\right)\)
nên \(5^{36}>11^{24}\)
b) Ta có: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
mà \(9^n>8^n\left(9>8\right)\)
nên \(3^{2n}>2^{3n}\)
So sánh ( sử dụng phương pháp trung gian): 339 Và 1121
Ta có:
\(3^{39}< 3^{42}\)
Mà: \(3^{42}=\left(3^2\right)^{21}=9^{21}\)
Lại có: \(9< 11\Rightarrow9^{21}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
so sánh các số sau số nào lớn hơn
a)19920 và 200315
b)399 và 1121
a: 199^20=1568239201^5
2003^15=8036054027^5
=>199^20<2003^15
b: 3^99=27^33>27^21=11^21
Lời giải:
a.
$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$
$\Rightarrow 199^{20}< 2003^{15}$
b.
$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$
$\Rightarrow 3^{99}> 121^{11}> 11^{21}$
1 Thu gọn biểu thức
D = 5 + 52 + 53 + .... +5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
Bài 1:
D = 5 + 52 + 53+...+ 5100
5.D = 52 + 53+...+5 100 + 5101
5D - D = 5101 - 5
4D = 5101 - 5
D = \(\dfrac{5^{101}-5}{4}\)
Bài 2:
So sánh
a, 544 = (2.33)4 = 24.312
2112 = (3.7)12 = 312.712
Vì 24 < 712 nên 544 < 2112
b, 339 và 1121
339 = (313)3
1121 = (117)3
313 = (32)6.3 = 96.3 < 97 < 117
Vậy 339 < 1121
1 Thu gọn biểu thức
D = 5 + 52 + 53 + ... + 5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
1) \(D=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)
\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)
\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)
2)
a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)
b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)
\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)
\(201^{60}>398^{45}\)
Bài 1: So sánh
1/ a) 85 và 3.47 b) 637 và 1612 c) 1714 và 3111
d) 339 và 1121 e) 7245 - 7244 và 7244 - 7243
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³
a) \(8^5=2^{15};3.4^7=3.2^{14}\) lớn hơn \(2^{15}\)
\(\Rightarrow8^5\) nhỏ hơn \(3.4^7\)
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³
So sánh các số sau (có giải thích):
a, 53 và 35 32 và 23 26 và 62
b, 2015.2017 và 20162
c, 19920 và 200315
d, 399 và 1121 32n và 23n
Giúp mik vs ạ. Cảm ơn các bạn nhiều.
a, $5^{3} =5\times5\times5=125$
$3^{5} =3\times3\times3=27$
$125>27=>5^{3}>3^{5}$
$3^{2}=3\times3=9$
$2^{3}=2\times2\times2=8$
$9>8=>3^{2}>2^{3}$
$2^{6} =2\times2\times2\times2\times2\times2=64$
$6^{2}=6\times6=36$
$64>36=>2^{6}>6^{2}$
b, $2015\times2017=2015\times(2016+1)=2015\times2016+2015$
$2016^{2}=2016\times2016=2016\times(2015+1)=2016\times2015+2016$
$2015\times2016+2015<2016\times2015+2016=>2015\times2017<2016^{2}$
c, $199^{20}=199^{4\times5}=(199^{4})^{5}= 1568239201^{5}$
$2003^{15}=2003^{3\times5}=(2003^{3})^5 =8036054027^{5}$
$1568239201<8036054027=>199^{20}<2003^{15}$
d, $3^99 =3^{3\times33}=(3^{3})^{33}=27^{33}>27^{21}$
$11^{21}<27^{21}=>3^{99}>11^{21}$
$3^{2n}=9^n$
$2^{3n}=8^n$
$9>8=>3^{2n}>2^{3n}$
So sánh các số sau
a) 53 và 35
53 = 125
35 = 243
=> 53 < 35
32 và 23
32 = 9
23 = 8
=> 32 > 23
26 và 62
26 = 64
62 = 36
=> 26 > 62
b) 2015 x 2017 và 20162
2015 x 2017
= 2015 x ( 2016 + 1 )
= 2015 x 2016 + 2015
20162
= 2016 x 2016
= 2016 x ( 2015 + 1 )
= 2016 x 2015 + 2016
Vì: 2015 < 2016
=> 2015 x 2017 < 20162
c) 19920 và 200315
19920 < 20020 = ( 23 x 52 )20 = 260 x 540
200315 > 200015 = ( 2 x 103 )15 = ( 24 x 53 )15 = 260 x 545
=> 200315 > 19920
d) 399 và 1121
399 = ( 33 )33 = 2733 > 2721
Vì: 27 > 11
=> 2721 > 1121
=> 399 > 1121
32n và 23n
32n = ( 32 )n = 9n
23n = ( 23 )n = 8n
Vì 9 > 8
=> 9n > 8n
=> 32n > 23n
Vậy 32n > 23n
1 so sánh
a) 2435 và 3.275 b)6255và 1257 c)202303 và 303202
d)85và 3.74 e)7812và 711 g)339và 1121 h)201010 +20109 và 201110
bn nào lm nhanh và đúng hộ mk vs mk thật sự đang cần gấp
a) \(243^5=\left(3^5\right)^5=3^{25}\)
\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)
mà \(3^{25}>3^{16}\)
nên \(243^5>3\cdot27^5\)
b) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
mà \(5^{20}< 5^{21}\)
nên \(625^5< 125^7\)
c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)
mà \(8242408^{101}>91809^{101}\)
nên \(202^{303}>303^{202}\)
Số sánh:
339 và 1121
Ta có:
$3^{39}=3^{3\times33}=(3^{3})^{33}=27^{33}>27^{21}$
Mà $11^{21}<27^{21}=>3^{39}>11^{21}$
339 = (313)3
1121 = (117)3
313 = (32)6.3 = 96.3 < 116. 11 = 117
⇒ 313 < 117 ⇒ (313)3 < (117)3
⇒ 339 < 1121