Tính giá trị của đa thức
P(x) = 1+x+x²+x³+...+x²ᵒ¹ᵒ tại x=1, x=-1
Cho đa thức \(P(x) = - 9{x^6} + 4x + 3{x^5} + 5x + 9{x^6} - 1\).
a) Thu gọn đa thức P(x).
b) Tìm bậc của đa thức P(x).
c) Tính giá trị của đa thức P(x) tại \(x = - 1;x = 0;x = 1\).
a) \(\begin{array}{l}P(x) = - 9{x^6} + 4x + 3{x^5} + 5x + 9{x^6} - 1 = ( - 9{x^6} + 9{x^6}) + 3{x^5} + (4x + 5x) - 1\\ = 0 + 3{x^5} + 9x - 1 = 3{x^5} + 9x - 1\end{array}\).
b) Bậc của đa thức là 5.
c) Thay \(x = - 1;x = 0;x = 1\) vào đa thức ta được:
\(\begin{array}{l}P( - 1) = 3.{( - 1)^5} + 9.( - 1) - 1 = 3.( - 1) - 9 - 1 = - 3 - 9 - 1 = - 13.\\P(0) = {3.0^5} + 9.0 - 1 = 3.0 - 1 = 0 - 1 = - 1.\\P(1) = {3.1^5} + 9.1 - 1 = 3.1 + 9 - 1 = 3 + 9 - 1 = 11.\end{array}\)
1. Tính giá trị của đa thức F(x) = 2x2 – 3x – 2 tại x = -1; x = 0 ; x = 1; x = 2. Từ đó hãy tìm một nghiệm của đa thức F(x)
2. Tìm nghiệm của đa thức E(x) = x2 + x.
1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3
F(0) = 2. 02 – 3 . 0 – 2 = -2
F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.
Cho đa thức A(x)=x+x^2+x^3+x^4+.....+x^99+x^100
+CMR x = -1 là nghiệm của A(x)
+Tính giá trị của đa thức A(x) tại x=1/2
Cho đa thức M(x)=x2 - 4x + 4
a,Tính giá trị của đa thức tại x = 1 ;x = 2; x =3 và x = -1
b,Trong các số 1;2;3 và -1 ,số nào là nghiệm của đa thức M(x)
a. Thay x = 1 vào đa thức ta có:
\(1^2-4.1+4=1\)
Thay x = 2 vào đa thức ta có
\(2^2-4.2+4=0\)
Thay x = 3 vào đa thức ta có:
\(3^2-4.3+4=1\)
Thay x = -1 vào đa thức ta có:
\(\left(-1\right)^2-4.\left(-1\right)+4=9\)
b. Trong các số trên 2 là nghiệm của đa thức M(x)
a, M(\(x\)) = \(x^2\) - 4\(x\) + 4
M(1) = 12 - 4.1 + 4 = 1
M(2) = 22 - 4.2 + 4 = 0
M(3) = 32 - 4.3 + 4 = 1
M(-1) = (-1)2 - 4.(-1) + 4 = 9
b, Trong các số 1; 2; 3 và -1 thì 2 là nghiệm của M(\(x\)) vì M(2) = 0
a. Thay x = 1 vào đa thức ta có:
Thay x = 2 vào đa thức ta có
Thay x = 3 vào đa thức ta có:
Thay x = -1 vào đa thức ta có:
b. Trong các số trên 2 là nghiệm của đa thức M(x)
cho đa thức :x+x^2+x^3+...+x^99+x^100
a. chứng minh x= -1 là nghiêm của đa thức A[x]
b. tính giá trị của đa thức A[x] tại x = 1/2
giúp mk câu b với. cảm ơn mn
a) Thay x=-1 vào A(x), ta được:
\(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=-1+1-1+1+...+\left(-1\right)+1\)
=0
Vậy: x=-1 là nghiệm của đa thức A(x)
Thay x=-1 vào A(x), ta được:
A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100A(−1)=−1+(−1)2+(−1)3+(−1)4+...+(−1)99+(−1)100
=−1+1−1+1+...+(−1)+1=−1+1−1+1+...+(−1)+1
=0
Vậy: x=-1 là nghiệm của đa thức A(x)
Cho đa thức B(x)=1+x+x^2+x^3+...+x^99+x^100
Tính giá trị của đa thức tại x=\(\frac{1}{2}\)
Giúp mình với mình đang cần gấp please
\(B\left(x\right)=1+x+x^2+x^3+....+x^{100}\)
\(\Rightarrow Bx=1+x^2+x^3+......x^{101}\)
\(\Rightarrow B\left(x-1\right)-x^{101}-x\)
\(\Rightarrow B=\frac{x^{101}-x}{x-1}\)
\(\Rightarrow B=\frac{\left(\frac{1}{2}\right)^{101}-\frac{1}{2}}{\frac{1}{2}-1}\)
Cho đa thức A(x)= x^2+x^3+...+x^99+x^100
a, C/m x=1 la nghiệm của A(x)
b, Tính giá trị của đa thức A(x) tại x=1/2
Cho đa thức A(x)= x+x2 + x3 +...+ x100
a) CMR: x=-1 là nghiệm của đa thức
b) Tính giá trị đa thức tại x=1/2
Cho đa thức A(x)=x+x2+x3+...+x100
a. CMR : x=-1 là nghiệm của đa thức A(x)
b. Tính giá trị đa thức tại x=1/2