Chứng minh biểu thức sau không phụ thuộc vào x :
(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz
Chứng minh rằng biểu thức sau không âm:
\(x^2y^2+y^2z^2+z^2x^2-x^2yz-y^2xz-z^2xy\)
Tham khảo:
Câu hỏi của Nguyễn Tấn Phát
link:https://olm.vn/hoi-dap/detail/214667445437.html
ib đưa link
CMR : Biểu thức sau đây không âm
\(x^2y^2+y^2z^2+z^2x^2-x^2yz-y^2xz-z^2xy\)
Áp dụng bđt AM-GM:
\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)
\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^{^4}}=2xyz^2\)
\(x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)
Cộng theo vế và rút gọn: \(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\ge0\left(đpcm\right)\)
\(\left(xy-yz\right)^2=x^2y^2-2xy^2z+y^2z^2\ge0\)
\(\Rightarrow x^2y^2+y^2z^2\ge2xy^2z\)
Thiết lập hai BĐT còn tại tương tự và cộng theo vế và chia cho 2:
\(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+y^2xz+z^2xy\)
Chuyển vế ta có đpcm.
Dấu "=" xảy ra khi \(xy=yz=zx\Leftrightarrow x=y=z\)
Nó dạng kiểu kiểu \(a^2+b^2+c^2-ab-bc-ca\) ấy
Bạn phân tích thành:
\(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\right]\ge0\)
chứng minh(x-y-z)^2=x^2+y^2+z^2-2xy+2xz+2yz
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Rút gọn phân thức x^2+y^2+z^2-2xy+2xz-2yz/x^2-2xy+y^2-z^2
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
Chứng tỏ rằng giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến . A) 2 ( 2x + x^2 ) - x^2 ( x+2 ) + x( x^3 - 4x+ 3 ) B) z ( y-x ) + y ( z-x ) + x ( y+2 ) - 2yz + 100 . C) 2y ( y^2 + y + 1 ) - 2y ^2 ( y +1 ) - 2 ( y + 10 )
Chứng minh rằng:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
Với mọi x,y,z chứng minh
a, x²+y²+z² ≥ 2xy-2xz+2yz
b, x²+y²+z²+3 ≥ 2(x+y+z)