Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Thị Thanh Xuân
Xem chi tiết
Phước Nguyễn
18 tháng 7 2016 lúc 10:39

Đặt  \(u=\frac{x}{a};\)  và  \(v=\frac{y}{b}\)  \(\Rightarrow\)  \(\hept{\begin{cases}u,v\in Z\\u+v=1\\uv=-2\end{cases}}\)

Khi đó, ta có:

\(u+v=1\)

nên  \(\left(u+v\right)^3=1\)  \(\Leftrightarrow\)  \(u^3+v^3+3uv\left(u+v\right)=1\)

Do đó,  \(u^3+v^3=1-3uv\left(u+v\right)=1+6=7\)

Vậy,  \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=7\)

Phước Nguyễn
18 tháng 7 2016 lúc 10:47

\(ĐK:\)  \(a,b,c\ne0\)

Ta có: 

\(a+b+c=0\)

\(\Leftrightarrow\) \(a+b=-c\)

\(\Rightarrow\)  \(\left(a+b\right)^2=\left(-c\right)^2\)

\(\Leftrightarrow\)  \(a^2+b^2+2ab=c^2\)

nên    \(a^2+b^2-c^2=-2ab\)

Tương tự với vòng hoán vị  \(b\rightarrow c\rightarrow a\)  ta cũng suy ra được:

\(\hept{\begin{cases}b^2+c^2-a^2=-2bc\\c^2+a^2-b^2=-2ca\end{cases}}\)

Khi đó, biểu thức  \(P\)  được viết lại dưới dạng:

\(P=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=0\) (do \(a,b,c\ne0\)  )

Bùi Trần Nhật Thanh
18 tháng 7 2016 lúc 12:30

1. Ta có: \(\frac{x}{a}+\frac{y}{b}=1\)

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}\right)^3=1\)

\(\Rightarrow\left(\frac{x}{a}\right)^3+3.\frac{x}{a}.\frac{y}{b}\left(\frac{x}{a}+\frac{y}{b}\right)+\left(\frac{y}{b}\right)^3=1\)

\(\Rightarrow\left(\frac{x}{a}\right)^3+\left(\frac{y}{b}\right)^3+3.\left(-2\right).1=1\)

\(\Rightarrow\left(\frac{x}{a}\right)^3+\left(\frac{y}{b}\right)^3=1+6=7\)

2.Do \(a+b+c=0\)

Ta có:

\(b^2+c^2-a^2=b^2+c^2+2bc-a^2-2bc\)

                         \(=\left(b+c\right)^2-a^2-2bc\)

                         \(=\left(a+b+c\right)\left(b+c-a\right)-2bc=-2bc\)

CM tương tự: \(a^2+b^2-c^2=-2ab\)

                    \(c^2+a^2-b^2=-2ca\)

Vậy \(P=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)

3.

a)Ta có : \(x^2+y^2=1\Rightarrow x^4+2x^2y^2+y^4=1\Rightarrow x^4+y^4=1-2x^2y^2\)

Ta có :

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)

\(\Leftrightarrow\frac{bx^4+ay^4}{ab}=\frac{1}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(bx^4+ay^4\right)=ab\)

\(\Leftrightarrow\left(a+b\right)\left(bx^4+ay^4\right)-ab=0\)

\(\Leftrightarrow abx^4+a^2y^4+b^2x^4+aby^4-ab=0\)

\(\Leftrightarrow\left(ay^2\right)^2+\left(bx^2\right)^2+ab\left(x^4+y^4\right)-ab=0\)

\(\Leftrightarrow\left(ay^2\right)^2+\left(bx^2\right)^2+ab-2abx^2y^2-ab=0\)(Do \(x^4+y^4=1-2x^2y^2\))

\(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Leftrightarrow ay^2=bx^2\)

b) Ta có : \(x^2+y^2=1\Rightarrow-x^2=y^2-1\)

Xét \(ay^2\left(a+b\right)-ab\)

\(\Leftrightarrow\left(ay\right)^2+aby^2-ab\)

\(\Leftrightarrow\left(ay\right)^2-abx^2\)

\(\Leftrightarrow a\left(ay^2-bx^2\right)=0\)(Do \(ay^2=bx^2\))

\(\Rightarrow ay^2\left(a+b\right)-ab=0\)

\(\Rightarrow ay^2\left(a+b\right)=ab\)

\(\Rightarrow\frac{ay^2}{ab}=\frac{1}{a+b}\)

\(\Rightarrow\frac{\left(ay^2\right)^{1004}}{\left(ab\right)^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)

\(\Rightarrow\frac{\left(ay^2\right)^{1004}+\left(bx^2\right)^{1004}}{\left(ab\right)^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

Trần Đạt
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Incursion_03
Xem chi tiết
Incursion_03
21 tháng 6 2019 lúc 20:54

34, Quảng Ninh

Cho x;y;z > 0 thỏa mãn x + y + z < 1

Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

Ta có bđt sau : \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)

Áp dụng ta được \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

                                \(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{2017}{xy+yz+zx}\)

                                \(\ge\frac{\left(1+2\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}+\frac{2017}{\frac{\left(x+y+z\right)^2}{3}}\)

                               \(=\frac{9}{\left(x+y+z\right)^2}+\frac{6051}{\left(x+y+z\right)^2}\)

                                \(=\frac{6060}{\left(x+y+z\right)^2}\ge\frac{6060}{1}=6060\)

Dấu "=" tại x = y = z = 1/3

Incursion_03
21 tháng 6 2019 lúc 21:14

39, Chuyên Hưng Yên

Với x;y là các số thực thỏa mãn \(\left(x+2\right)\left(y-1\right)=\frac{9}{4}\)

Tìm \(A_{min}=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

Ta có \(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

              \(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt  \(\hept{\begin{cases}x+1=a\\y-2=b\end{cases}}\)

Thì \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\)và giả thiết đã cho trở thành \(\left(a+1\right)\left(b+1\right)=\frac{9}{2}\)

Ta có bất đẳng thức \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(1)

Thật vậy

 \(\left(1\right)\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

         \(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt luôn đúng

*Nếu xz + yt > 0 thì bđt tương đương với

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

 \(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(Luôn đúng)

Vậy bđt (1) được chứng minh

Áp dụng (1) ta được \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)

                                                                                              \(=\sqrt{\left(a^2+b^2\right)^2+4}\)

Ta có \(\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b+1=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b=\frac{5}{4}\)

Áp dụng bđt Cô-si có \(a^2+b^2\ge2ab\)

                                   \(2\left(a^2+\frac{1}{4}\right)\ge2a\)

                                  \(2\left(b^2+\frac{1}{4}\right)\ge2b\)

Cộng 3 vế vào được

\(3\left(a^2+b^2\right)+1\ge2\left(ab+a+b\right)=\frac{5}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Khi đó \(A\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{3}\)

Dấu ''=" tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x+1=\frac{1}{2}\\y-2=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{5}{2}\end{cases}}\)

Incursion_03
21 tháng 6 2019 lúc 21:41

38, Hưng Yên

Cho x;y;z > 0 thỏa mãn \(x^2+y^2+z^2=3xyz\)

Tìm \(P_{max}=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)(Chỗ này phân số thứ 2 đề ở tử là y2 không phải y4 cô nhé )

                         Giải

Áp dụng bđt Cô-si có

\(x^4+yz\ge2x^2\sqrt{yz}\)

\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)

Áp dụng bđt Cô-si \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

                    \(\Rightarrow\frac{1}{2\sqrt{yz}}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{1}{2\sqrt{yz}}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự \(\frac{y^2}{y^4+zx}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{z}\right)\) 

                 \(\frac{z^2}{z^4+xy}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Khi đó \(VT\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

                                                                                                       \(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\)

                                                                                                       \(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\)

                                                                                                        \(=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Dấu "=" tại x = y = z =1

qưet
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:20

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:30

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:32

5.

\(\frac{a\sqrt{b-1}+b\sqrt{a-1}}{ab}=\frac{1.\sqrt{b-1}}{b}+\frac{1.\sqrt{a-1}}{a}\le\frac{1+b-1}{2b}+\frac{1+a-1}{2a}=1\)

\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

Dấu "=" xảy ra khi \(a=b=2\)

6. Áp dụng BĐT cơ bản:

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow\left(ab+bc+ca\right)^2\ge3\left(ab.bc+bc.ca+ab+ca\right)\)

\(\Rightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
lương thị hằng
Xem chi tiết
Lê Ngọc Mai
Xem chi tiết
Nyatmax
4 tháng 10 2019 lúc 18:57

Ta co:

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

Dau '=' xay ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)

Ta lai co:

\(\frac{x^6}{a^3}+\frac{y^6}{b^3}=\left(\frac{x^2}{a}\right)^3+\left(\frac{y^2}{b}\right)^3=2\left(\frac{x^2}{a}\right)^3\)

Ma \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow x^2=\frac{a}{a+b}\)

\(\Leftrightarrow\frac{x^2}{a}=\frac{1}{a+b}\)

\(\Leftrightarrow\left(\frac{x^2}{a}\right)^3=\frac{1}{\left(a+b\right)^3}\)

\(\Rightarrow\frac{x^6}{a^3}+\frac{y^6}{b^3}=\frac{2}{\left(a+b\right)^3}\)

Momozono Nanami
Xem chi tiết
alibaba nguyễn
23 tháng 3 2017 lúc 16:02

Ta có:

\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)

\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)

\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)

\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)

\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)

b/ Thế vô rồi tính nhé

ngonhuminh
23 tháng 3 2017 lúc 19:25

Đoạn gần cuối thay y-x= 1 luôn 

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)

\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\)  giờ mới thay không biết đã tối giản chưa

Tiểu Đào
Xem chi tiết