Câu 1: Giải các phương trình sau:
a) 3- 4x (25 - 2x ) = 8x2 + x - 300
b)
c)
Giải phương trình: 3 – 4x(25 – 2x) = 8x2 + x – 300
3 – 4x(25 – 2x) = 8x2 + x – 300
⇔ 3 – 4x.25 + 4x.2x = 8x2 + x – 300
⇔ 3 – 100x + 8x2 = 8x2 + x – 300
⇔ -100x – x = -300 – 3
⇔ -101x = -303
⇔ x = 3.
Vậy phương trình có tập nghiệm S = {3}.
Giải phương trình sau:
b)2( x +1) = 5x - 7
c) 3 - 4x(25 - 2x) = 8x2 + x - 300
d) \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
`b,2(x+1)=5x-7`
`=>2x+2=5x-7`
`=>3x=9`
`=>x=3`
`c,3-4x(25-2x)=8x^2+x-300`
`<=>3-100x+8x^2=8x^2+x-300`
`<=>101x=303`
`<=>x=3`
`d,(10x+3)/12=1+(6+8x)/9`
`<=>(10x+3)/12=(8x+15)/9`
`<=>30x+9=32x+60`
`<=>2x=-51`
`<=>x=-51/2`
Giải các phương trình sau:
a/ 3x – 2 = 2x – 3
b/ 7 – 2x = 22 – 3x
c) 8x – 3 = 5x + 12
d/ x – 12 + 4x = 25 + 2x – 1
e/ x + 2x + 3x – 19 = 3x + 5
a) \(PT\Leftrightarrow3x-2x=2-3\Leftrightarrow x=-1\)
Vậy: \(S=\left\{-1\right\}\)
b) \(PT\Leftrightarrow-2x+3x=-7+22\Leftrightarrow x=15\)
Vậy: \(S=\left\{15\right\}\)
c) \(PT\Leftrightarrow8x-5x=3+12\Leftrightarrow3x=15\Leftrightarrow x=5\)
Vậy: \(S=\left\{5\right\}\)
d) \(PT\Leftrightarrow x+4x-2x=12+25-1\Leftrightarrow3x=36\Leftrightarrow x=12\)
Vậy: \(S=\left\{12\right\}\)
e) \(PT\Leftrightarrow x+2x+3x-3x=19+5\Leftrightarrow3x=24\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=12
=>x=4
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=36
=>x=12
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
Giải các bất phương trình sau:
a) \(7{x^2} - 19x - 6 \ge 0\)
b) \( - 6{x^2} + 11x > 10\)
c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1\)
d) \({x^2} - 10x + 25 \le 0\)
a) Xét tam thức \(f\left( x \right) = 7{x^2} - 19x - 6\) có \(\Delta = 529 > 0\), có hai nghiệm phân biệt \({x_1} = - \frac{2}{7},{x_2} = 3\) và có \(a = 7 > 0\)
Ta có bảng xét dấu như sau
Vậy nghiệm của bất phương trình là đoạn \(\left[ { - \frac{2}{7};3} \right]\)
b) \( - 6{x^2} + 11x > 10 \Leftrightarrow - 6{x^2} + 11x - 10 > 0\)
Xét tam thức \(f\left( x \right) = - 6{x^2} + 11x - 10\) có \(\Delta = - 119 < 0\)và có \(a = - 6 < 0\)
Ta có bảng xét dấu như sau
Vậy bất phương trình vô nghiệm
c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1 \Leftrightarrow 2{x^2} - 6x + 6 > 0\)
Xét tam thức \(f\left( x \right) = 2{x^2} - 6x + 6\) có \(\Delta = - 12 < 0\)và có \(a = 2 > 0\)
Ta có bảng xét dấu như sau
Vậy bất phương trình có vô số nghiệm
d) Xét tam thức \(f\left( x \right) = {x^2} - 10x + 25\) có \(\Delta = 0\), có nghiệm kép \({x_1} = {x_2} = 5\) và có \(a = 1 > 0\)
Ta có bảng xét dấu như sau
Vậy nghiệm của bất phương trình là \(x = 5\)
Giải các phương trình sau:
a) \({5^{2x - 1}} = 25\);
b) \({3^{x + 1}} = {9^{2x + 1}}\);
c) \({10^{1 - 2x}} = 100000\).
\(a,5^{2x-1}=25\\ \Leftrightarrow5^{2x-1}=5^2\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(b,3^{x+1}=9^{2x+1}\\ \Leftrightarrow3^{x+1}=3^{4x+2}\\ \Leftrightarrow x+1=4x+2\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\)
\(c,10^{1-2x}=100000\\ \Leftrightarrow10^{1-2x}=10^5\\ \Leftrightarrow1-2x=5\\ \Leftrightarrow2x=-4\\ \Leftrightarrow x=-2\)
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
Bài 2: Giải các phương phương trình sau:
a) \(\dfrac{3\left(x-3\right)}{4}\)+\(\dfrac{4x-10,5}{4}\)=\(\dfrac{3\left(x+1\right)}{5}\)+6
b) \(\dfrac{2\left(3x+1\right)+1}{4}\)-5=\(\dfrac{2\left(3x-1\right)}{5}\)-\(\dfrac{3x+2}{10}\)
Mik đang cần gấp nha!!❤
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
<=> 6.6 - 0.9x = 2,6 + 0,1x - 4
<=> - 0.9x - 0,1x = -6.6 -1,4
<=> -x = -8
<=> x = 8
Vậy x = 8
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
<=> 3,6 - x - 0,5 = x - 5,5 + x
<=> - x - 3,1 = -5,5
<=> - x = -2.4
<=> x = 2.4
Vậy x = 2.4
Bài 5: Giải các phương trình sau:
a. (3x - 1)2 - (x + 3)2 = 0
b. x3 = \(\dfrac{x}{49}\)
c. x2 - 7x + 12 = 0
d. 4x2 - 3x -1 = 0
e. x3 - 2x - 4 = 0
f. x3 + 8x2 + 17x +10 = 0
g. x3 + 3x2 + 6x + 4 = 0
h. x3 - 11x2 + 30x = 0
a. (3x - 1)2 - (x + 3)2 = 0
\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)
\(\Leftrightarrow4x+2=0\) hoặc \(2x-4=0\)
1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)
2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
S=\(\left\{-\dfrac{1}{2};2\right\}\)
b. \(x^3=\dfrac{x}{49}\)
\(\Leftrightarrow49x^3=x\)
\(\Leftrightarrow49x^3-x=0\)
\(\Leftrightarrow x\left(49x^2-1\right)=0\)
\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(7x+1=0\) hoặc \(7x-1=0\)
1. x=0
2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)
3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
*Cách khác:
a) Ta có: \(\left(3x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(3x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-x-3\\3x-1=x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-2\\2x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};2\right\}\)
giải các phương trình sau:
a)2x(x-2)+5(x-2)=0
b)\(\dfrac{3x-4}{2}-\dfrac{4x+1}{3}\)
c)\(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)
a: =>(x-2)(2x+5)=0
=>x-2=0 hoặc 2x+5=0
=>x=2 hoặc x=-5/2
c: \(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)
=>\(\dfrac{2x^2+2x-x^2+x}{x^2-1}=1\)
=>x^2+3x=x^2-1
=>3x=-1
=>x=-1/3
giải các phương trình sau:
a)2x(x-2)+5(x-2)=0
b)\(\dfrac{3x-4}{2}\)-\(\dfrac{4x+1}{3}\)
c)\(\dfrac{2x}{x-1}\)-\(\dfrac{x}{x+1}=1\)
\(a,\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{2;\dfrac{5}{2}\right\}\)
\(c,\Leftrightarrow2x.\left(x+1\right)-x.\left(x-1\right)=\left(x-1\right)\left(x+1\right)\) ( ĐKXĐ: \(x\ne-1;x\ne1\) )
\(\Leftrightarrow2x^2+2x-x^2+x=x^2-1\\ \Leftrightarrow x^2-x^2+3x=-1\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\) ( nhận )
Vậy phương trình có tập nghiệm S = \(\left\{-\dfrac{1}{3}\right\}\)