Tinh tong
A = 1x2 + 2x3 + 3x4 +...+ 98x99
So sanh:
102011+1/102012+1 va 102012+1/102013+1
A=102012+1/102011+1 và B=102011+1/102010+1
\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)
10^2012+10>10^2011+10
=>9/10^2012+10<9/10^2011+10
=>-9/10^2012+10>-9/10^2011+10
=>A>B
cho A = 102012 + 102011 + 102010 + 102009 + 8
Sửa đề: Chứng mình chia hết 24
Tách: 24=8.3
⇒3 (1)
8 (Vì: 0088) (2)
Từ (1) và (2) ⇒A24 Vì: (3,8)
⇒đpcm
tham khảo
https://olm.vn/hoi-dap/detail/48844794829.html
A=10 2012+10 2011+10 2010+10 2009+8
= 100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
= (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8
=12
Cho A= 102012 + 102011+ 102010 +102009 Chứng minh A không phải là số chính phương
tinh tong 1/1x2+ 1/2x3 + 1/ 3x4+...+ 1/999x1000 =
tinh tong S , biet : S = \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+.......+\frac{1}{2010x2011}\)
k mk 3 cai nha mk k lai cho
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=1-\frac{1}{2011}\)
\(S=\frac{2010}{2011}\)
Phân tích: 1 / 1 x 2 = 1 - 1/2
1/2.3 = 1/2 - 1/3
. ....Bạn làm tương tự các số còn lại...
Ta được: 1 - 1/2 + 1/2 - 1/3 + ....+1/ 2010 - 1/2011
= 1 - 1/2011
= 2010/2011
tinh tong 1x2+2x3+3x4+.............+99x100
Đặt S = 1 x 2 + 2 x 3 + ......... + 99 x100
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ...... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ...... + 99 x 100 x 101 - 98 x 99 x 100
3S = ( 1 x 2 x 3 - 1 x 2 x 3) +.... + (98 x 99 x 100 - 98 x 99 x 100) + 99 x 100 x 101
3S = 99 x 100 x 101
S = 99 x 100 x 101 : 3 = 333300
tinh 1/1x2+1/2x3+1/3x4...1/2005x2006
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
= \(1-\frac{1}{2006}\)
= \(\frac{2005}{2006}\)
Tinh: 1/1x2+1/2x3+1/3x4+...+1/99x100
1/1x2
1/2x3
tim so thu 50 va tinh tong 50 so do
\(\frac{1}{1}\cdot2=2\)
\(\frac{1}{2}\cdot3=\frac{3}{2}\)