chứng minh tứ giác BEFC nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác BEFC
Cho △ABC nhọn, góc B =60° nội tiếp (O: 3cm). Vẽ hai đường cao BE và CF cắt nhau tại H
a) Chứng minh tử giác AEHF nội tiếp. Xác định tâm và bán kính của đường tròn ngoại tiếp đó
b) Chứng minh tử giác BFEC nội tiếp góc BCF = góc BEF
c) Tính độ dài cung nhỏ AC
d) Chứng minh đường thẳng OA vuông góc với EF
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}\)
nên BFEC là tứ giác nội tiếp
Cho tam giác ABC nhọn, nội tiếp đường tròn (O), Các đường cao BE,CF cắt nhau tại H
a)Chứng minh AKHN nội tiếp đường tròn và xác định tâm của đường tròn ngoại tiếp tứ giác đó.
b)AK.NB=AN.KC.
c)Chứng Minh BKNC nội tiếp.Xác định tâm của đường tròn ngoại tiếp tứ giác đó.
d)Chứng minh AH⊥BC.
f)Đường thẳng BE , CF cắt đường tròn tại P , Q. Chứng minh cung AP = cung AQ
Sửa đề: Hai đường cao BN,CK
a: góc AKH+góc ANH=180 độ
=>AKHN nội tiếp
Tâm là trung điểm của AH
b: Xet ΔANB vuông tại N và ΔAKC vuông tại K có
góc A chung
=>ΔANB đồng dạng với ΔAKC
=>NB/KC=AN/AK
=>NB*AK=AN*KC
c: góc BKC=góc BNC=90 độ
=>BKNC nội tiếp
d: Xét ΔACB co
BN,CK là đường cao
BN cắt CK tại H
=>H là trực tâm
=>AH vuông góc CB
Cho tam giác ABC ( AB=AC ) nội tiếp trong một đường tròn ( O ), các đường cao AG, BE, CF gặp nhau tại H.
a. Chứng minh tứ giác AEHF là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b. Chứng minh AF.AC=AH.AG
c. Chứng minh GE là tiếp tuyến của đường tròn ( I )
Cho tam giác ABC nhọn nội tiếp (O), có BE , CF là 2 đường cao cắt nhau tại H
a) Cm: tứ giác BEFC nội tiếp, xác định vị trí tâm I của đường tròn đó.
b) vẽ AK là đường kính của (O). Cm: H, I, K thẳng hàng
c) gọi D là giao điểm của AH và BC. Cm 4 điểm : D,E,F,I cùng thuộc 1 đường tròn
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp đường tròn đường kính BC
I là trung điểm của BC
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
mà BK//CH
nên BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>H,I,K thẳng hàng
Cho tam giác ABC nhọn nội tiếp (O), có BE , CF là 2 đường cao cắt nhau tại H
a) Cm: tứ giác BEFC nội tiếp, xác định vị trí tâm I của đường tròn đó.
b) vẽ AK là đường kính của (O). Cm: H, I, K thẳng hàng
c) gọi D là giao điểm của AH và BC. Cm 4 điểm : D,E,F,I cùng thuộc 1 đường tròn
a, Gọi I là trung điểm của BC
Tam giác BEC vuông tại E trung tuyến EI nên IE = IB = IC
Tam giác BFC vuông tại F trung tuyến FI nên IF = IB = IC
Vậy tứ giác BEFC cùng thuộc đường tròn tâm I bán kính IB
b, Ta có :
\(\widehat{ACK}=90^0\) ( góc nội tiếp chắn nửa đường tròn )
= > BH // CK ( cùng vuông góc với AC )
Tương tự ta cũng có CH // BK
= > BHCK là hình bình hành
= > 2 đường chéo cắt nhau tại trung điểm của mỗi đường
Mà I là trung điểm của BC
= > H,I,K thẳng hàng ( đpcm )
c, Dễ thấy các tứ giác AFHE và BFHD nội tiếp nên :
\(\widehat{DFE}=\widehat{DFH}+\widehat{HFE}=\widehat{HBD}+\widehat{HAF}=2\widehat{HBD}=2.\left(90^0-\widehat{C}\right)=180^0-2\widehat{C}\)
( Do góc HBD và HAF cùng phụ với góc C )
Lại có :
Tam giác EIC cân tại I nên :
\(\widehat{EIC}=180^0-\widehat{IEC}-\widehat{ECI}=180^0-2\widehat{C}\)
\(=>\widehat{EIC}=\widehat{DFE}\)
= > Tứ giác DFEI là tứ giác nội tiếp
= > D,F,E,I cùng thuộc 1 đường tròn
cho tam giác ABC nhọn nội tiếp đường tròn O . các đường cao AD , BE và CF cắt nhau tại H
A/ chứng minh tứ giác BCEF nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác
B/ đường thẳng EF cắt đường BC tại M và cắt đường tròn O tại K và T ( K nằm giữa M và T ) chứng minh MD.MI=MK.MT
C/ đường thẳng vuông góc với IH tại I cắt các đường thẳng AB,AC,AD lần lượt tại N,S,G . chứng minh G là trung điểm NS
thankkkkkkkkkkkkkkkkkkk
a) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm I của đường tròn ngoại tiếp tứ giác BCEF là trung điểm của BC
bạn tham khảo ở đây nha,bài này mình từng làm rồi
https://hoc24.vn/cau-hoi/881cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-cac-duong-cao-adbecf-cat-nhau-tai-ha-chung-minh-tu-giac-bcef-noi-tiep-va-xac-dinh-tam-i-cua-duong-tron-ngoai-tiep-tu-giacb-duong-thang-ef-cat-duon.1092906662181
8/81
cho tam giác ABC nhọn nội tiếp đường tròn O . các đường cao AD,BE,CF cắt nhau tại H
A/ chứng minh tứ giác BCEF nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác
B/ đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn O tại K và T ( K nằm giữa M và T ) . chứng minh MD.MI=MK.MT
C/ đường thẳng vuông góc với IH tại I cắt các đường thẳng AB,AC,AD lần lượt tại N,S,G . chứng minh G là trung điểm NS
thankkkkkkkkkkkkkk
a) Ta có: \(\angle BFC=\angle BEC=90\Rightarrow BCEF\) nội tiếp
Gọi I là trung điểm BC
Ta có: \(\Delta BFC\) vuông tại F có I là trung điểm BC \(\Rightarrow IF=IB=IC\)
\(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)
\(\Rightarrow IE=IF=IB=IC\Rightarrow I\) là tâm (BCEF)
b) Xét \(\Delta MKB\) và \(\Delta MCT:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCT\left(BKTCnt\right)\\\angle TMCchung\end{matrix}\right.\)
\(\Rightarrow\Delta MKB\sim\Delta MCT\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MT}\Rightarrow MK.MT=MB.MC\left(1\right)\)
Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle MFB=\angle MCE\left(BCEFnt\right)\\\angle EMCchung\end{matrix}\right.\)
\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow MB.MC=MF.ME\left(2\right)\)
Ta có: \(\angle AFC=\angle ADC=90\Rightarrow AFDC\) nội tiếp
Tương tự \(\Rightarrow ABDE,AEHF\) nội tiếp
Ta có: \(\angle FEI=\angle FEB+\angle BEI=\angle FAH+\angle EBI\) (\(\Delta EBI\) cân tại I)
\(=\angle FAH+\angle EAD=\angle BAC=\angle BDF\) (AFDC nội tiếp)
\(\Rightarrow FDIE\) nội tiếp \(\Rightarrow\angle MDF=\angle MEI\)
Xét \(\Delta MFD\) và \(\Delta MIE:\) Ta có: \(\left\{{}\begin{matrix}\angle MDF=\angle MEI\\\angle EMIchung\end{matrix}\right.\)
\(\Rightarrow\Delta MFD\sim\Delta MIE\left(g-g\right)\Rightarrow\dfrac{MF}{MI}=\dfrac{MD}{ME}\Rightarrow MD.MI=MF.ME\left(3\right)\)
Từ (1),(2) và (3) \(\Rightarrow MD.MI=MK.MT\)
c) Từ C kẻ đường thẳng song song với NS cắt AB,AD lần lượt tại J và L
Vì \(CJ\parallel NS\) và \(NS\bot IH\Rightarrow CJ\bot IH\) mà \(CD\bot HL\)
\(\Rightarrow I\) là trực tâm tam giác CHL \(\Rightarrow LI\bot HC\) mà \(AJ\bot CH\)
\(\Rightarrow IL\parallel BJ\) mà I là trung điểm BC \(\Rightarrow L\) là trung điểm CJ
mà \(CJ\parallel NS\) \(\Rightarrow G\) là trung điểm NS (dùng Thales để biến đổi thôi,bạn tự chứng minh nha)
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.
Cho A.ABC có ba góc nhọn nội tiếp đường tròn (0) (CA > CB). Ba đường cao AD, BE, CF
cắt nhau tại H. AD và BE cắt (O) lần lượt tại M và N.
1, Chứng minh tứ giác ABDE nội tiếp, xác định tâm I của đường tròn ngoại tiếp tứ giác
ABDE và chứng minh MN // DE.
2, Chứng minh AE.AC.CE = CD.AB.EF
3, Gọi K là trung điểm của HC. Chứng minh IHKO là hình bình hành.