Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
HUYEN KHANH

Những câu hỏi liên quan
Lan Triệu
Xem chi tiết
Phong Thần
3 tháng 2 2021 lúc 20:06

nó khó nhìn thiệt ha

Ngô Anh Hiếu
9 tháng 2 2021 lúc 14:45

rốt cục là hỏi j, hỏi hay trả lời đó

Vũ Trần Giang
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2023 lúc 21:54

Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)

\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)

\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)

\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)

\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)

\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)

\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)

\(\ge6\left(x+y+z+3\right)^2\)

Dấu "=" xảy ra khi \(x=y=z=1\)

tiêu hoàng thảo nhi
Xem chi tiết
Phạm Đức Bình
14 tháng 5 2023 lúc 21:09

Năng ceo à t lópw 7 r conf ko bt lm

Fischer2709
14 tháng 5 2023 lúc 21:14

phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé

 

MiMi -chan
Xem chi tiết
Nguyễn Đức Anh
28 tháng 4 2022 lúc 10:13

Do đường tròn tiếp xúc với trục Ox nên R = d(I,Ox) = |yI|.

Phương trình trục Ox là y = 0

Đáp án D đúng vì: Tâm I(−3;\(\dfrac{-5}{2}\)) và bán kính R=\(\dfrac{5}{2}\). Ta có   

d(I, Ox) = |yI| = R.

 

Bùi Hương Giang
Xem chi tiết
Dury
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2021 lúc 13:12

b: \(x-2\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2\)

hoang thi hong hoa
Xem chi tiết
I don
15 tháng 2 2018 lúc 18:38

a) \(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)

\(\Rightarrow|x+\frac{3}{4}|=|y-\frac{1}{5}|=|x+y+z|=0\)

\(\Rightarrow|x+\frac{3}{4}|=0\)                           \(\Rightarrow|y-\frac{1}{5}|=0\)                                \(\Rightarrow|x+y+z|=0\)

\(\Rightarrow x+\frac{3}{4}=0\)                              \(\Rightarrow y-\frac{1}{5}=0\)                                      \(\Rightarrow x+y+z=0\)

\(x=\frac{-3}{4}\)                                                \(y=\frac{1}{5}\)                                                 thay x=-3/4; y=1/5 vào biểu thức trên

                                                                                                                                          ta có \(\frac{-3}{4}+\frac{1}{5}+z=0\)

                                                                                                                                                        \(z=0-\frac{-3}{4}-\frac{1}{5}\)

      VẬY X=-3/4; Y=1/5; Z=11/20

B) \(|3x-4|+\left|3y-5\right|=0\)

\(\Rightarrow\left|3x-4\right|=\left|3y-5\right|=0\)

\(\Rightarrow\left|3x-4\right|=0\)                                    \(\Rightarrow\left|3y-5\right|=0\)

\(3x-4=0\)                                                    \(3y-5=0\)

\(3x=4\)                                                                    \(3y=5\)
\(x=\frac{4}{3}\)                                                                       \(y=\frac{5}{3}\)

VẬY X= 4/3; Y=5/3

C) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)

ĐỂ \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)

\(\Rightarrow\left|x+\frac{3}{4}\right|;\left|y-\frac{2}{5}\right|;\left|z+\frac{1}{2}\right|< 0\)

MÀ GIÁ TRỊ TUYỆT ĐỐI LUÔN MANG SỐ NGUYÊN DƯƠNG

\(\Rightarrow x;y;z\in\varnothing\)

d) \(\left|x+\frac{1}{5}\right|+\left|3-y\right|=0\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=\left|3-y\right|=0\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=0\)                                \(\Rightarrow\left|3-y\right|=0\)

\(x+\frac{1}{5}=0\)                                                 \(3-y=0\)

\(x=\frac{-1}{5}\)                                                              \(y=3\)

VẬY X= -1/5; Y=3

CHÚC BN HỌC TỐT!!!!!!!

Phùng Minh Quân
15 tháng 2 2018 lúc 13:58

Ta có : 

\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}\)

Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)

Phùng Minh Quân
15 tháng 2 2018 lúc 14:03

\(b)\) Ta có : 

\(\left|3x-4\right|+\left|3y-5\right|=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-4=0\\3y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4\\3y=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\y=\frac{5}{3}\end{cases}}}\)

Vậy \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)

vaqddddd
Xem chi tiết
Vũ Thu Hiền
Xem chi tiết
Bích Ngọc
Xem chi tiết
Mới vô
1 tháng 8 2017 lúc 17:33

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

 Mashiro Shiina
1 tháng 8 2017 lúc 17:44

Bạn mới hỏi ở dưới rồi :v

Mới vô
1 tháng 8 2017 lúc 17:48

b,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{2}{5}\right|\ge0\forall y\\ \left|z+\dfrac{1}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\forall x,y,z\\ \)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{2}{5}\right|=0\\\left|z+\dfrac{1}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{2}{5}=0\\z+\dfrac{1}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{2}{5}\\z=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy ...

c,

\(\left|x+\dfrac{19}{5}\right|\ge0\forall x\\ \left|y+\dfrac{1890}{1975}\right|\ge0\forall y\\ \left|z-2004\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-1890}{1975}=\dfrac{-378}{395}\\z=2004\end{matrix}\right. \)

Vậy ...