Tìm m để f(x) =x^+mx+m+3 luôn dương với mọi x thuộc R
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
2.
\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)
\(\Leftrightarrow x^2-mx+1>0\forall x\)
\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)
Kết luận: \(-2< m< 2\)
Tìm các giá trị thực của tham số m để f(x) = -x² -2(m-2)x +m+3 luôn âm với mọi x thuộc R
\(\Delta=\left(-2m+4\right)^2-4\cdot\left(-1\right)\left(m+3\right)\)
=4m^2-16m+16+4(m+3)
=4m^2-16m+16+4m+12
=4m^2-12m+28
Để f(x)<0 với mọi x thì 4m^2-12m+28<0 và -1<0
=>\(m\in\varnothing\)
Tìm m để f(x)=mx2-4(m+1)x+m-5 luôn âm với mọi x thuộc R
- Với \(m=0\Rightarrow f\left(x\right)=-4x-5>0\) khi \(x< -\dfrac{5}{4}\) (ktm)
- Với \(m\ne0\Rightarrow f\left(x\right)< 0;\forall x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-4< m< -\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow-4< m< -\dfrac{1}{3}\)
Cho \(\left(m-1\right)x^3+2\left(m-1\right)x^2+mx\). Tìm tất cả các giá trị của m để f'(x)<0 với mọi x thuộc R
\(f'\left(x\right)=3\left(m-1\right)x^2+4\left(m-1\right)x+m\)
- Với \(m=1\Rightarrow f'\left(x\right)=1>0\) (không thỏa mãn)
- Với \(m\ne1\Rightarrow f'\left(x\right)< 0;\forall x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3m\left(m-1\right)< 0\\m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 4\\m< 1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
mọi người ơi giúp em bài này vx ạ e cần gấp
cho f(x)= mx^2 - 3mx + 2 , với m là tham số . Tìm m để f(x) > 0 với mọi x thuộc R
Với giá trị nào của m thì f(x)=2x^2+3x-(m-1) luôn dương với mọi x thuộc R?
\(2x^2+3x-\left(m-1\right)>0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2>0\\\Delta=9+8\left(m-1\right)< 0\end{matrix}\right.\)
\(\Rightarrow m< -\dfrac{1}{8}\)
Bài 1. Tìm m để f (x)=mx^2 -2(m-1)x+4m-1 luôn dương Bài 2 tìm tất cả các giá trị của tham số m để bất phương trình sau có nghiệm đúng với mọi a.5x^2-x+m>0 b.m(m+2)x^2+2mx+2>0