( 3/2.5 + 3/5.8 + 3/8.11 + .........+ 3/302.305 ) - 4x = 2/305
tinh tong
A=2/2.5+2/5.8+2/8.11+.....+2/302.305
1/2.5 - 1/5.8 -1/8.11 - ...- 1/302.305
=1/3.3(1/2.5-1/5.8-1/8.11-...-1/302.305)
=1/3.(3/2.5-3/5.8-3/8.11-...-3/302.305)
=1/3(1/2-1/5-1/5-1/8-1/8-1/11-...-1/302-1/305)
=1/3[(1/2-1/305)+(1/5-1/5)+...+(1/302-1/302)
=1/3*(1/2-1/305)=1/3*(305/610-1/610)=1/3*304/610=152/915
hình như mình làm sai hoặc sai đề , sao số lớn ghê
A=3/2.5+3/5.8+3/8.11+...+3/92.98
B=2/2.5+2/5.8+2/8.11+...+2/92.98
Đề hình như bị sai ban ơi sửa lại
\(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}\)
\(A=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)
\(A=3.\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{95}\)
\(A=\dfrac{93}{190}\)
\(B=\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{92.95}\)
\(3B=2\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)
\(3B=2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)
\(3B=2\left(\dfrac{1}{2}-\dfrac{1}{95}\right)\)
\(3B=2.\dfrac{93}{190}\)
\(3B=\dfrac{93}{95}\)
\(\Rightarrow B=\dfrac{31}{95}\)
4/2.5 + 4/5.8 + 4/8.11 + ... + 4/ 302 . 305
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{302}-\dfrac{1}{305}\right)=\dfrac{4}{3}\cdot\dfrac{303}{610}=\dfrac{202}{305}\)
\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{302.305}\)
\(=4\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{302.305}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{302.305}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{302}-\dfrac{1}{305}\right)\)
\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{305}\right)\)
\(=\dfrac{4}{3}.\dfrac{303}{610}\\ =\dfrac{202}{305}\)
B=3/2.5+3/5.8+3/8.11+3/11.14
=1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14
=1/2-1/14
=7/14-1/14=6/14=3/7
A= 3/2.5+3/5.8+3/8.11+3/11.14
\(\dfrac{3}{2.5}\)+\(\dfrac{3}{5.8}\)+\(\dfrac{3}{8.11}\)\(\dfrac{3}{11.14}\)+\(\dfrac{3}{14.17}\)<\(\dfrac{1}{2}\)
\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)
= \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)
\(=\dfrac{1}{2}-\dfrac{1}{17}\)
\(=\dfrac{15}{34}\)
Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)
tính
S=3/2.5+3/5.8+3/8.11+...+3/98.101
\(S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\)
\(S=\frac{1}{2}-\frac{1}{101}\)
\(S=\frac{99}{202}\)
Bạn cho mình thêm 1/3 ở dòng 2 của bài làm mình nhé
Kết quả ra là : \(\frac{33}{202}\)
M=32 /2.5+32/5.8+32/8.11+...+32/98.101
\(M= \dfrac{3^2}{2.5} +\dfrac{3^2}{5.8} +\dfrac{3^2}{8.11}+...+\dfrac{3^2}{98.101}\)
\(M= \) \( \dfrac{9}{2.5} +\dfrac{9}{5.8} +\dfrac{9}{8.11}+...+\dfrac{9}{98.101}\)
\(M=3(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+ \dfrac{3}{98.101})\)
\(M= 3(\dfrac{1}{2} -\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11})\)
\(M= 3(\dfrac{1}{2}-\dfrac{1}{11})\)
\(M=3(\dfrac{11}{22}- \dfrac{2}{22})\)
\(M=3.\dfrac{9}{22}\)
\(M=\dfrac{27}{22}\)