cho đơn thức A= \(\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0 \)
a)thu gọn đơn thức A
b)tìm hệ số,phần biến vầ bậc của đơn thức A
c)tìm z để A ≥ 0
Cho đơn thức
A = \(\left(\dfrac{-3}{8}x^2y\right).\left(\dfrac{2}{3}xy^2.2^2\right).\left(\dfrac{4}{5}x^3y\right)\)
a) Thu gọn đơn thức
b)Xác định hệ số , phần biến của đơn thức A
\(a,A=\left(\dfrac{-3}{8}x^2y\right)\left(\dfrac{2}{3}xy^2z^2\right)\left(\dfrac{4}{5}x^3y\right)\\ =\left(\dfrac{-3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y.y^2.y\right).z^2\\ =\dfrac{-1}{5}x^6y^4z^2\)
b, Hệ số: \(-\dfrac{1}{5}\)
Biến: \(x^6y^4z^2\)
c, Bậc: 12
d,Thay x=-1, y=-2, z=3 vào A ta có:
\(A=\dfrac{-1}{5}x^6y^4z^2=\dfrac{-1}{5}.\left(-1\right)^2.\left(-2\right)^4.3^2=\dfrac{-1}{5}.1.16.9=\dfrac{-144}{5}\)
Cho đa thức \(P
\left(x\right)\) có bậc là 2020 thỏa mãn \(P\left(k\right)=\dfrac{k}{k+1}\) với \(k\in\left\{0;1;2;3;.....;2020\right\}\). Tính \(P\left(2021\right)=?\)
#định_lý_BéZout
Từ giả thiết ta có \(P\left(k\right).\left(k+1\right)=k\)
Đặt \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)
Khi đó \(Q\left(k\right)=\left(k+1\right).P\left(k\right)-k=0\) thỏa mãn với mọi \(k\in\left\{0;1;2;3;4;.............;2020\right\}\)
Theo định lý Bézout ta có
\(Q\left(x\right)=x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right).R\left(x\right)\)
Vì đa thức \(P\left(x\right)\) có bậc là 2020 nên đa thức \(Q\left(x\right)\) có bậc là 2021.
Suy ra đa thức \(R\left(x\right)\) có bậc là 0 , hay còn gọi là đa thức \(R\left(x\right)\) không chứa biến số.
Đặt \(R\left(x\right)=a\) với \(a\in R\)
Khi đó đa thức \(Q\left(x\right)\) có dạng như sau :
\(Q\left(x\right)=a.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\)
Mặt khác , ta lại có
\(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)
Thay \(x=-1\) ta có \(Q\left(-1\right)=1\)
Suy ra \(a.\left(-1\right).\left(-2\right).\left(-3\right).\left(-4\right).....\left(-2021\right)=1\)
Suy ra \(a=\dfrac{-1}{2021!}\)
Khi đó đa thức \(Q\left(x\right)\) có dạng như sau :
\(Q\left(x\right)=\dfrac{-1}{2021!}.x.\left(x-1\right).\left(x-2\right).\left(x-3\right)....\left(x-2020\right)\)
Mặt khác ta lại có \(Q\left(x\right)=\left(x+1\right).P\left(x\right)-x\)
Thay \(x=2021\) ta có
\(Q\left(2021\right)=2022.P\left(2021\right)-2021\)
\(\Rightarrow\dfrac{-1}{2021!}.2021.2020.....1=2022.P\left(2021\right)-2021\)
\(\Rightarrow-1=2022.P\left(2021\right)-2021\)
\(\Rightarrow P\left(2021\right)=\dfrac{1010}{1011}\)
Tìm giá trị nhỏ nhất của biểu thức \(\dfrac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)
M= \(\left(\dfrac{2}{3}xy^3\right)\).\(\left(\dfrac{3}{4}x^3y\right)\)
a) rút gọn biểu thức M
b) Chỉ rõ phần hệ số , phần biến và bậc của đơn thức sau khi thu gọn
a, \(M=\dfrac{1}{2}x^4y^4\)
b, hệ số : 1/2 ; biến x^4y^4 ; bậc 8
\(a,M=\left(\dfrac{2}{3}xy^3\right)\left(\dfrac{3}{4}x^3y\right)=\left(\dfrac{2}{3}.\dfrac{3}{4}\right)\left(x.x^3\right)\left(y^3.y\right)=\dfrac{1}{2}x^4y^4\)
b, Hệ số:\(\dfrac{1}{2}\)
Biến:x4y4
Bậc:8
thu gọn các đơn thức sau cho biết phần hệ số , phần biến số, bậc của mỗi đơn thức trong đó ab là hằng số
\(\left(\dfrac{a}{b}xy^3z^2\right)^3\).\(\left(\dfrac{b^2}{a}x^3y^2z\right)^2\)
\(=\dfrac{a^3}{b^3}\cdot x^3\cdot y^9\cdot z^6\cdot\dfrac{b^4}{a^2}\cdot x^6y^4z^2=ab\cdot x^9y^{13}z^8\)
Hệ số là ab
Phần biến là \(x^9;y^{13};z^8\)
Bậc là 30
Tìm GTLN và GTNN nếu có của các biểu thức sau :
a. \((x+\dfrac{2}{3})^2+\dfrac{1}{2}với(x\in Q)\)
b.\(\left|x-2020\right|+2021\)
tìm các khoảng đơn điệu của hàm số
a)y = \(\dfrac{-2x+1}{x^2-3x+1}\)
b)y = \(x\left(2021+\sqrt{2020-x^2}\right)\)
BT16: Cho đơn thức \(F=\left(-\dfrac{3}{5}xy^2\right)^2.\left(\dfrac{20}{27}x^3y\right)\)
a, Thu gọn đơn thức và tìm bậc của đơn thức F
b, Tính giá trị của biểu thức F biết \(y=-\dfrac{x}{3}\)và x+y=2
a: F=9/25x^2y^4*20/27x^3y=4/15x^5y^5
Bậc: 10
b: y=-x/3 và x+y=2
=>x+y=2 và -1/3x-y=0
=>x=3 và y=-1
Khi x=3 và y=-1 thì F=4/15*(-3)^5=-324/5
Cho \(\dfrac{x}{2020}+\dfrac{y}{2021}+\dfrac{z}{2022}=1\) và \(\dfrac{2020}{x}+\dfrac{2021}{y}+\dfrac{2022}{z}=0\) \(\left(x,y,z\ne0\right)\)
Chứng minh rằng \(\dfrac{x^2}{2020^2}+\dfrac{y^2}{2021^2}+\dfrac{z^2}{2022^2}=1\)