Cho a+b+c=0
CM: a^4+b^4+c^4=2(ab+bc+ca)^2
Cho a,b,c>0 , ab+bc+ca=0
Cm 9a^4×b^2+ 9b^4×c^2+ 9c^4×a^2 》1
Cm nếu: a + b + c = 0 thì a^4 + b^4 + c^4 = 2(ab + bc + ca)^2
Ta có: (ab + bc + ca)2 = a2b2 + b2c2 + c2a2 + 2abc(a + b + c)
= a2b2 + b2c2 + c2a2 vì a + b + c = 0
Mặt khác; từ (a+b+c)2 = 0; có:
a2 + b2 + c2 = -2(ab+bc+ca)
=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2
=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) = 4[a2b2 + b2c2 + c2a2 + 2abc(a+b+c)]
=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) (1)
Mặt khác: (ab+bc+ca)2 = a2b2 + b2c2 + c2a2 + 2abc(a+b+c)
= a2b2 + b2c2 + c2a2 (2)
Từ (1) và (2)
=> a4 + b4 + c4 = 2(ab + bc + ca)2
Hmm giúp xem nào .-.
Cho `a,b,c>0,a^2+b^2+c^2=3`
`CM:1/(4-sqrt{ab})+1/(4-\sqrt{bc})+1/(4-\sqrt{ca})<=1`
Có \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}=\dfrac{2}{8-\sqrt{2\left(a^2+b^2\right)}}\)
Tương tự: \(\dfrac{1}{4-\sqrt{bc}}\le\dfrac{2}{8-\sqrt{2\left(b^2+c^2\right)}}\), \(\dfrac{1}{4-\sqrt{ca}}\le\dfrac{2}{8-\sqrt{2\left(a^2+c^2\right)}}\)
Đặt \(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)=\left(x;y;z\right)\)
Khi đó \(\left\{{}\begin{matrix}x+y+z=6\\z,y,z>0\end{matrix}\right.\) (1)
Đặt VT của bđt là A
Có \(A=\dfrac{1}{4-\sqrt{ab}}+\dfrac{1}{4-\sqrt{bc}}+\dfrac{1}{4-\sqrt{ca}}\le\dfrac{2}{8-\sqrt{2x}}+\dfrac{2}{8-\sqrt{2y}}+\dfrac{2}{8-\sqrt{2z}}\)
Ta cm bđt phụ: \(\dfrac{2}{8-\sqrt{2x}}\le\dfrac{1}{36}\left(x-2\right)+\dfrac{1}{3}\)
Thật vậy bđt trên tương đương \(\dfrac{6}{3\left(8-\sqrt{2x}\right)}-\dfrac{8-\sqrt{2x}}{3\left(8-\sqrt{2x}\right)}-\dfrac{1}{36}\left(x-2\right)\le0\)
\(\Leftrightarrow\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{3\left(8-\sqrt{2x}\right)}-\dfrac{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}{36}\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)\left[\dfrac{\sqrt{2}.12}{36\left(8-\sqrt{2x}\right)}-\dfrac{\left(\sqrt{x}+\sqrt{2}\right)\left(8-\sqrt{2x}\right)}{36\left(8-\sqrt{2x}\right)}\right]\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)^2.\dfrac{\left(\sqrt{x}-2\sqrt{2}\right)}{36\left(8-\sqrt{2x}\right)}\le0\) (*)
Từ (1) ta có \(x\in\left(0;6\right)\) nên bđt phụ trên luôn đúng
Tương tự ta cũng có \(\dfrac{2}{8-\sqrt{2y}}\le\dfrac{1}{36}\left(y-2\right)+\dfrac{1}{3}\) , \(\dfrac{2}{8-\sqrt{2z}}\le\dfrac{1}{36}\left(z-2\right)+\dfrac{1}{3}\)
Từ đó => \(A\le\dfrac{1}{36}\left(x+y+z-6\right)+1=\dfrac{1}{36}\left(6-6\right)+1=1\) (đpcm)
Dấu = xảy ra <=> x=y=z=2 <=> a=b=c=1
Cho a,b,c>0. CM: \(\frac{a^4+b^4+c^4}{ab+bc+ca}+\frac{3abc}{a+b+c}\ge\frac{2}{3}.\left(a^2+b^2+c^2\right)\)
cho a+b+c=0 CM a^4 +b^4+c^4=
2(a^2*b^2+b^2*c^2+c^2*a^2)
2(ab+bc+ca)^2
(a^2+b^2+c^2)^2 \ 2
1. Cho a + b + c = 0. CM:
a/ a3 + b3 + c3 = 3abc.
b/ (ab + bc + ca)2 = a2b2 + b2c2 + c2a2.
c/ a4 + b4 + c4 = 2(ab + bc +ca)2.
2. Cho a + b + c + d = 0. CM:
a3 + b3 + c3 + d3 = 3(b + c)(ad - bc)
Bài 2:
a+b+c+d=0
nên b+c=-(a+d)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)
\(=\left(b+c\right)\left(3ad-3bc\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
cho a+b+c=0 . CMR a, ( ab+bc+ca)^2 = a^2b^2+b^2c^2+c^2a^2 b, a^4+b^4+c^4=2(ab+bc+ca)^2
a+b+c=0
=> ( a+ b+c ) ^2 =0 ( rồi phân tích chuyển dấu )
=> a^2+ b^2+ c^2 = - ( 2ab+ 2ac+ 2bc)
=> ( a ^2 + b^2 + c^2 ) ^2 = ( 2ab+ 2ac+ 2bc) ^2
. Rồi bạn tách tiếp nghen, bạn có làm được tiếp chứ? Có gì cứ hỏi tớ tiếp nhé
cho a+ b+c=0 cm a4+b4+c4=
a) 2(ab+bc+ca)2
b) (a2+b2+c2)2/2
Câu hỏi của Khoa Nguyễn Đăng - Toán lớp 8 - Học toán với OnlineMath
cho a+b+c=0 chứng minh a^4+b^4+c^4=2(ab+bc+ca)^2
Lời giải:
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[(a+b+c)-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=4(ab+bc+ac)^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$
$=4(ab+bc+ac)^2-2[(ab+bc+ac)^2]=2(ab+bc+ac)^2$
Ta có đpcm.