Cho \(a,b,c>0\). Chứng minh rằng \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) .
Cho \(a,b,c>0\).Chứng minh \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Do a;b;c > 0 ; Áp dụng bất đẳng thức Cauchy - Schwarz ta có :
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\) (đpcm)
Cho \(a\ge0,b\ge0,c\ge0\).Chứng minh rằng :
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ac}\)
Nhân từng vế bđt trên =>đpcm
\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)
\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)
\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)
\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)
\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)
\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)
Câu BĐT cơ bản:
Cho a,b,c không âm. Chứng minh rằng:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dùng BĐT phụ:
\(\left(x+y\right)^2\ge4xy\)
Ta có:\(\left(a+b\right)^2\ge4ab\)
\(\left(b+c\right)^2\ge4bc\)
\(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu “=” xảy ra khi a = b = c
Áp dụng BĐT Cauchy - Schwarz :
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(dpcm\right)\)
Áp dụng BĐT Cauchy-Schwars ta có:
\(\left(a+b\right)^2\ge4ab\)
Tương tự \(\left(b+c\right)^2\ge4bc\)
\(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2.\left(b+c\right)^2.\left(c+a\right)^2\ge64\left(abc\right)^2\)
\(\Rightarrow\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)
Dấu "=" xảy ra khi \(a=b=c\)
Học tốt
Chứng minh BĐT dựa vào BĐT Côsi:
1) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (a, b, c ≥ 0)
2) \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8\) (a, b, c > 0)
c) \(\left(a+2\right)\left(b+8\right)\left(a+b\right)\ge32ab\) (a, b ≥ 0)
1 ) \(â+b\ge2\sqrt{ab}\)
Tương tự : \(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
Nhân vế theo vế của 3 bpt dc dpcm
Dấu = xảy ra khi a = b = c
2) Nhân 2 vế bpt vs abc
Cm như 1)
3) \(a+2\ge2\sqrt{2a}\)
\(b+8\ge2\sqrt{8b}\)
\(a+b\ge2\sqrt{ab}\)
Nhân vế theo vế của 3 bpt dc dpcm
Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=8\\a=b\end{matrix}\right.\) (vô lí)
nên k xảy ra đẳng thức
Cho a, b, c, d là những số dương.
Chứng minh rằng :
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Cho a+b+c=1, a, b, c\(\ge0\). Chứng minh
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(a,b,c>0\right)\)
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3,5\)
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
*) ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Nhân vế với vế của các BĐT trên,ta được: \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Cho a,b,c>0.Chứng minh rằng\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le1\)
Đặt vế trái là P:
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a+b\right)\left(c+a\right)}\ge\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}=\sqrt{ab}+\sqrt{ac}\)
Tương tự với 2 biểu thức còn lại, ta được:
\(P\le\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}+\dfrac{b}{b+\sqrt{ab}+\sqrt{bc}}+\dfrac{c}{c+\sqrt{ac}+\sqrt{bc}}\)
\(P\le\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Bạn tham khảo ở đây nhé.
https://olm.vn/hoi-dap/detail/96898674827.html
chứng minh:
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)
\(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
Nhân theo vế:
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)
\("="\Leftrightarrow a=b=c=1\)
Cho a, b, c > 0 và a + b + c = 3. Chứng minh rằng \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(ab+c\right)\left(bc+a\right)\left(ca+b\right)\)