Giải phương trình:
\(\sqrt{9-\dfrac{9}{x}}=x-\sqrt{x-\dfrac{9}{x}}\)
Giải bất phương trình: \(\dfrac{8-x}{\sqrt{9-x}}-\dfrac{2-x}{\sqrt{x-1}}\ge3\)
ĐKXĐ: \(1< x< 9\)
Đặt \(\left\{{}\begin{matrix}\sqrt{9-x}=a\\\sqrt{x-1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a;b>0\\a^2+b^2=8\end{matrix}\right.\) \(\Rightarrow\left(a+b\right)^2\le16\Rightarrow a+b\le4\)
\(BPT\Leftrightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}\ge3\) (1)
Đặt \(P=\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}-3\)
\(P=a+b-\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-3\le a+b-\dfrac{4}{a+b}-3\)
\(P\le\dfrac{\left(a+b\right)^2-3\left(a+b\right)-4}{a+b}=\dfrac{\left(a+b+1\right)\left(a+b-4\right)}{a+b}\le0\)
\(\Rightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}\le3\) (2)
(1); (2) \(\Rightarrow\dfrac{a^2-1}{a}+\dfrac{b^2-1}{b}=3\)
Dấu "=" xảy ra khi và chỉ khi: \(a=b=2\Leftrightarrow x=5\)
Vậy BPT đã cho có nghiệm duy nhất \(x=5\)
\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
Giải phương trình.
giúp e với ạaa :< gấp aa :((
\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\left(x\ge3\right)\)
\(=25\sqrt{\dfrac{1}{25}.\left(x-3\right)}-7\sqrt{\dfrac{4}{9}.\left(x-3\right)}-7\sqrt{x^2-9}+18\sqrt{\dfrac{1}{9}.\left(x^2-9\right)}=0\)
\(=5\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Rightarrow\dfrac{1}{3}\sqrt{x-3}-\sqrt{\left(x-3\right)\left(x+3\right)}=0\Rightarrow\sqrt{x-3}-3\sqrt{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow\sqrt{x-3}\left(1-3\sqrt{x+3}\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=3\sqrt{x+3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{26}{9}\left(l\right)\end{matrix}\right.\)
giải phương trình
a,\(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}=1\)
b,\(\left(x^2+1\right)=5-x\sqrt{2x^2+4}\)
b.
\(\left(x^2+1\right)^2=5-x\sqrt{2x^2+4x}\)
\(\Leftrightarrow x^4+2x^2-4+x\sqrt{2x^2+4x}=0\)
Đặt \(x\sqrt{2x^2+4x}=t\Rightarrow t^2=x^2\left(2x^2+4x\right)=2\left(x^4+2x^2\right)\)
Pt trở thành:
\(\dfrac{t^2}{2}-4+t=0\)
\(\Leftrightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4x}=2\left(x>0\right)\\x\sqrt{2x^2+4x}=-4\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-2=0\left(x>0\right)\\x^4+2x^2-8=0\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow\dfrac{9}{x^2}+2+\dfrac{2x}{\sqrt{2x^2+9}}=3\)
\(\Leftrightarrow\dfrac{2x^2+9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}=3\)
Đặt \(\dfrac{x}{\sqrt{2x^2+9}}=t\Rightarrow\dfrac{2x^2+9}{x^2}=\dfrac{1}{t^2}\)
Pt trở thành:
\(\dfrac{1}{t^2}+2t=3\)
\(\Rightarrow2t^3-3t^2+1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(2t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{2x^2+9}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{2x^2+9}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vô-nghiệm\right)\\4x^2=2x^2+9\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}\)
Kiểm tra lại vế trái đề bài câu b
Tính
\(\dfrac{4}{\sqrt{5}-3}\)-\(\dfrac{4}{\sqrt{5}+3}\)
Giải phương trình
\(\sqrt{4x-20}\)-3\(\sqrt{\dfrac{x-5}{9}}\)=\(\sqrt{1-x}\)
\(\dfrac{4}{\sqrt{5}-3}-\dfrac{4}{\sqrt{5}+3}\\ =\dfrac{4\left(\sqrt{5}+3\right)}{5-9}-\dfrac{4\left(\sqrt{5}-3\right)}{5-9}\\ =\dfrac{4\left(\sqrt{5}+3\right)}{-4}-\dfrac{4\left(\sqrt{5}-3\right)}{-4}\\ =-\left(\sqrt{5}+3\right)+\sqrt{5}-3\\ =-\sqrt{5}-3+\sqrt{5}-3\\ =-6\)
ĐK: \(x\ge5;x\le1\)
PT trở thành:
\(\sqrt{4}.\sqrt{x-5}-\dfrac{3\sqrt{x-5}}{3}=\sqrt{1-x}\\ \Leftrightarrow2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\\ \Leftrightarrow\sqrt{x-5}=\sqrt{1-x}\\ \Leftrightarrow x-5=1-x\\ \Leftrightarrow x-5-1+x=0\\ \Leftrightarrow2x-6=0\\ \Leftrightarrow x=3\left(loại\right)\)
Vậy PT vô nghiệm.
`HaNa♬D`
a: \(=\dfrac{4\left(\sqrt{5}+3\right)-4\left(\sqrt{5}-3\right)}{5-9}=\dfrac{4\left(\sqrt{5}+3-\sqrt{5}+3\right)}{-4}=-6\)
b: ĐKXĐ: x-5>=0 và 1-x<=0
=>x>=5 và x<=1
=>Không có x thỏa mãn ĐKXĐ
=>PT vô nghiệm
Giải các bất phương trình sau:
a) \(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}< x+21\)
b) \(\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}\ge x\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải các phương trình:
a) \(\dfrac{1}{x-1+\sqrt{x^2-2x+3}}+\dfrac{1}{x-1-\sqrt{x^2-2x+3}}=1;\)
b) \(\dfrac{3}{x+\sqrt{9-x^2}}-\dfrac{2}{3-\sqrt{9-x^2}}=\dfrac{1}{x}.\)
a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)
ĐKXĐ : \(x\inℝ\)
\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)
\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)
\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)
\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy phương trình có nghiệm duy nhất x = 0
\(6\sqrt{x}+1-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)\
giải phương trình ạ!!!
giải phương trình :
\(\sqrt{25x-125}-3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
Ta có: \(\sqrt{25x-125}-3\cdot\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
\(\Leftrightarrow5\sqrt{x-5}-3\cdot\dfrac{\sqrt{x-5}}{3}-\dfrac{1}{3}\cdot3\sqrt{x-5}=6\)
\(\Leftrightarrow3\sqrt{x-5}=6\)
\(\Leftrightarrow x-5=4\)
hay x=9