Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
:vvv
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:58

a.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)

Pt trở thành:

\(729\left(t^4-2t^2+1\right)+8t=36\)

\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)

\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)

\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)

Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:59

b.

ĐKXĐ: ...

\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)

Đặt \(\sqrt{10+4x-x^2}=t\ge0\)

\(\Rightarrow-3t^2-5t+42=0\)

\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{10+4x-x^2}=3\)

\(\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow x=...\)

nguyễn Thanh Hiền
Xem chi tiết
Pham Thi Ngoc Minh
6 tháng 2 2020 lúc 22:49

a) 

Đặt x^2 + x - 5 = t.

Khi đó, pt đã cho trở thành :

t ( t + 9 ) = -18

<=> t^2 + 9t + 18 = 0

<=> ( t + 3 )( t + 6 ) = 0

Giải pt trên, ta được t = -3 và t = -6 là các nghiệm của pt.

+) t = -3 => x^2 + x - 5 = -3

           <=> x^2 + x - 2 = 0

          <=> ( x + 2 )( x - 1 ) = 0

Giải pt trên, ta được x = -2 ; x = 1 là các nghiệm của pt.

+) t = -6 => x^2 + x - 5 = -6

            <=> x^2 + x + 1 = 0

           <=> ( x + 1/2 )^2 + 3/4 = 0

=> Pt trên vô nghiệm.

Vậy..........

b)

x^3 - 7x + 6 = 0

<=> ( x^3 + 3x^2 ) - ( 3x^2 + 9x ) + ( 2x + 6 ) = 0

<=> x^2 . ( x + 3 ) - 3x . ( x + 3 ) + 2( x + 3 ) = 0

<=> ( x + 3 ) ( x^2 - 3x + 2 ) = 0

<=> ( x+ 3 )( x - 2 )( x - 1 ) = 0

Giải pt trên, ta được x = -3 ; x= 2 ; x= 1 là các nghiệm của pt.

Vậy..........

c)

( 3x^2 + 10x - 8 )^2 = ( 5x^2 - 2x + 10 )^2

<=> ( 3x^2 + 10x - 8 )^2 - ( 5x^2 - 2x + 10 )^2 = 0

<=> ( 3x^2 + 10x - 8 - 5x^2 + 2x - 10 )( 3x^2 + 10x - 8 + 5x^2 - 2x + 10 ) = 0

<=> ( -2x^2 + 12x - 18 )( 8x^2 + 8x + 2 ) = 0

<=> ( x^2 - 6x + 9 )( 4x^2 + 4x + 1 ) = 0

<=> ( x - 3 )^2 . ( 2x + 1 )^2 = 0.

Giải pt trên, ta được x = 3 và x = -1/2 là các nghiệm của pt.

Vậy..........

Khách vãng lai đã xóa
Kami no Kage
Xem chi tiết
Nguyển Đình Lâm 202
13 tháng 3 2016 lúc 7:51

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

Nguyễn Hà Anh
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
ILoveMath
28 tháng 11 2021 lúc 16:27

a, ĐKXĐ:...

\(\sqrt{5x+10}=8-x\\ \Leftrightarrow5x+10=64-16x+x^2\\ \Leftrightarrow x^2-21x+54=0\)

.....

b, ĐKXĐ:...

\(\sqrt{4x^2+x-12}=3x-5\\ \Leftrightarrow4x^2+x-12=9x^2-30x+25\\ \Leftrightarrow5x^2-31x+37=0\)

.....

 

Teendau
Xem chi tiết
Nguyễn Tất Đạt
16 tháng 3 2019 lúc 23:20

ĐKXĐ: \(x\ge-2\)

Pt cho \(\Leftrightarrow4\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=x^2+x+10\)

Đặt \(\sqrt{x+2}=a;\sqrt{x^2-2x+4}=b\left(a,b\ge0\right)\)

Khi đó ta được pt: \(4ab=b^2+3a^2\Leftrightarrow\left(b-a\right)\left(b-3a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\b=3a\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x+2}=\sqrt{x^2-2x+4}\left(1\right)\\\sqrt{x^2-2x+4}=3\sqrt{x+2}\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tm\right)}\)

\(\left(2\right)\Leftrightarrow x^2-11x-14=0\Leftrightarrow\left(x-\frac{11}{2}\right)^2=\frac{177}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11+\sqrt{177}}{2}\\x=\frac{11-\sqrt{177}}{2}\end{cases}\left(tm\right)}\)

Vậy tập nghiệm của pt là \(S=\left\{1;2;\frac{11\pm\sqrt{177}}{2}\right\}.\)

Nge  ỤwỤ
Xem chi tiết
Nguyễn Huy Tú
13 tháng 4 2021 lúc 22:12

\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-....+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-6}=\dfrac{1}{10}\Leftrightarrow\dfrac{x-6-x+1}{\left(x-1\right)\left(x-6\right)}=\dfrac{1}{10}\)

\(\Leftrightarrow x^2-7x+56=0\Leftrightarrow x^2-2.\dfrac{7}{2}x+\dfrac{49}{4}+\dfrac{175}{4}=\left(x-\dfrac{7}{2}\right)^2+\dfrac{175}{4}>0\)

Vậy phương trình vô nghiệm 

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:22

ĐKXĐ: \(x\notin\left\{1;2;3;4;5;6\right\}\)

Ta có: \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}+\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}+\dfrac{1}{x-6}-\dfrac{1}{x-5}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-1}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{10\left(x-1\right)}{10\left(x-6\right)\left(x-1\right)}-\dfrac{10\left(x-6\right)}{10\left(x-1\right)\left(x-6\right)}=\dfrac{\left(x-1\right)\left(x-6\right)}{10\left(x-1\right)\left(x-6\right)}\)

Suy ra: \(x^2-7x+6=10x-10-10x+60\)

\(\Leftrightarrow x^2-7x+6=50\)

\(\Leftrightarrow x^2-7x-44=0\)

\(\Leftrightarrow x^2-11x+4x-44=0\)

\(\Leftrightarrow x\left(x-11\right)+4\left(x-11\right)=0\)

\(\Leftrightarrow\left(x-11\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-11=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

Vậy: S={11;-4}

HT2k02
13 tháng 4 2021 lúc 22:22

ĐKXĐ : \(x\notin\left\{1;2;...;6\right\}\)

\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+...+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\\ \Leftrightarrow\dfrac{\left(x-1\right)-\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}+\dfrac{\left(x-2\right)-\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+...+\dfrac{\left(x-5\right)-\left(x-6\right)}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\\ \Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+...+\dfrac{1}{x-6}-\dfrac{1}{x-5}=\dfrac{1}{10}\\ \Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-1}=\dfrac{1}{10}\\ \Leftrightarrow\dfrac{5}{\left(x-1\right)\left(x-6\right)}=\dfrac{5}{50}\\ \Rightarrow\left(x-1\right)\left(x-6\right)=50\\ \Leftrightarrow x^2-7x-44=0\\ \Leftrightarrow\left(x-11\right)\left(x+4\right)=0\\ \Leftrightarrow\begin{matrix}x=-4\\x=11\end{matrix}\left(t.m\right)\)

Nguyễn Thị Kim Chi
Xem chi tiết
Nguyễn Linh Chi
24 tháng 8 2019 lúc 16:51

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!