Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Giải pt:
a. \(x-\sqrt{x^4-2x^2+1}=1\)
b. \(\sqrt{x^2+4x+4}+|x-4|=0\)
c. \(\sqrt{x-2}+\sqrt{x-3}=-5\)
d. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
e. \(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
g.\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
h. \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
Giải PT a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\)
b. \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\)
c. \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)
d. \(\sqrt{9x-2x^2}-9x+2x^2+6=0\)
e. \(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
f. \(\sqrt{x^2+x-5}+\sqrt{x-x^2+3}=x^2-3x+4\)
Giải PT: \(\sqrt{x+5}+\sqrt{3-x}-2.\left(\sqrt{15-2x-x^2}+1\right)=0\)
giải các pt sau
a)10x2-x-11=0 b)2x2-3x-2=0 c)2x2-8=0 d)3x2-5x=0 e)x2-2x+1=0 f)3x4-12x2+9=0 g)x4-4x2-5=0
n)x3-3x2-x+3=0 m)x4-3x2-4=0 h)\(\frac{12}{x-1}-\frac{8}{x+1}=1\)
i)x3+6x2+5x=0 k)3x2-x-6=0
Giải PT: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
Giải PT:
\(2x^2-6x+10-5\left(x-2\right)\sqrt{x+1}=0\)
Giải phương trình:
*a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
b) \(4x^4-5x^2+1=0\)
c) \(2x^4-7x^2+5=0\)
*d) \(x^4+7x^3-6x^2+7x+1=0\)