Cho a, b thuộc R, a >b và ab= 2. Tìm min M = ( a2 + b2)/ ( a-b)
Cho a, b, c thuộc R và a2 + b2 + c2 <= 2. Tìm GTNN P = 2021ca - ab - bc
Ta có \(2P=4042ca-2ab-2bc=\left(\sqrt{2021}a+\sqrt{2021}c-\dfrac{1}{\sqrt{2021}}b\right)^2-\left(2021a^2+2021c^2+\dfrac{1}{2021}b^2\right)\ge-\left(2021a^2+2021c^2+\dfrac{1}{2021}b^2\right)\).
Lại có \(2021a^2+2021c^2+\dfrac{1}{2021}b^2\le2021\left(a^2+c^2+b^2\right)=4042\).
Do đó \(2P\ge-4042\Rightarrow P\ge-2021\).
Dấu "=" xảy ra khi và chỉ khi b = 0; \(a=-c=\pm1\).
Cho a,b>0 và a+b=1. Tìm Min F=2/ab + 1/(a2+b2) + (a4+b4)/2
Cho a,b > 0 và a + b ≤ 4. Tìm Min P = 4/ a2 + b2 + 3/ab
\(P=\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\right)\left[4\left(a^2+b^2\right)+12ab\right]\ge\left[\sqrt{\dfrac{4}{a^2+b^2}.4\left(a^2+b^2\right)}+\sqrt{\dfrac{3}{ab}.12ab}\right]^2=100\)
\(\Rightarrow P\ge\dfrac{100}{4\left(a^2+b^2\right)+12ab}=\dfrac{100}{4\left(a+b\right)^2+4ab}=\dfrac{25}{\left(a+b\right)^2+ab}\)
\(\Rightarrow P\ge\dfrac{25}{4^2+ab}=\dfrac{25}{16+ab}\) (vì \(a+b\le4\)).
Mặt khác ta có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{4^2}{4}=4\)
\(\Rightarrow P\ge\dfrac{25}{16+4}=\dfrac{5}{4}\)
Dấu "=" xảy ra khi \(a=b=2\).
Vậy \(MinP=\dfrac{5}{4}\), đạt tại \(a=b=2\)
1 Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
2 Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
3 Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
cho a,b,c không đồng thời bằng 0 thỏa mãn a2+b2+c2=2,ab+bc+ca =1.tìm min,max của a,b,c
Tìm 2 số a,b biết:
a) a+b=10 và ab=32
b) a+b= 5 và a2+b2=13
c) a-b=2 và ab=80
d) a2+b2=29 và ab=10
b: =>a=5-b
\(\Leftrightarrow\left(5-b\right)^2+b^2=13\)
\(\Leftrightarrow2b^2-10b+25-13=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)
hay \(b\in\left\{2;3\right\}\)
\(\Leftrightarrow a\in\left\{3;2\right\}\)
b: =>a=5-b
⇔(5−b)2+b2=13⇔(5−b)2+b2=13
⇔2b2−10b+25−13=0⇔2b2−10b+25−13=0
⇔(b−2)(b−3)=0⇔(b−2)(b−3)=0
hay b∈{2;3}b∈{2;3}
⇔a∈{3;2}⇔a∈{3;2}
Câu 4: Giả sử cần tìm giá trị lớn nhất trong các ô A2, B2 và C2. Hàm nào sau đây là đúng?
A. max(A2,B2,C2) B. =max(A2,B2,C2) C. min(A2,B2,C2) D. =min(A2,B2,C2)
cho a,b,c ϵ R thỏa mãn a≥1; b≥1; 0≤c≤1 và a+b+c=3. Tìm GTLN và GTNN của P = (a2+b2+c2)/ab+bc+ca
\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)
\(P_{min}=1\) khi \(a=b=c=1\)
\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)
Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)
\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)
\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)
Cho a, b, c là các số thực dương thỏa mãn b2 + c2 ≤ a2. Tìm Min:\(M=\dfrac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM:
$M=\frac{b^2+c^2}{a^2}+a^2(\frac{1}{b^2}+\frac{1}{c^2})$
$\geq \frac{b^2+c^2}{a^2}+a^2.\frac{4}{b^2+c^2}$
$=(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2})+\frac{3a^2}{b^2+c^2}$
$\geq \sqrt{\frac{b^2+c^2}{a^2}.\frac{a^2}{b^2+c^2}}+\frac{3(b^2+c^2)}{b^2+c^2}$
$=2+3=5$
Vậy $M_{\min}=5$