\(\left(a-b\right)^2=a^2+b^2-2ab=a^2+b^2-4\)
=> \(a^2+b^2=\left(a-b\right)^2+4\)
\(M=\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+4}{a-b}=\left(a-b\right)+\frac{4}{a-b}\)
Do a>b => a-b>0
=> \(M\ge4\)
dấu = xảy ra <=> \(a=1+\sqrt{3},b=-1+\sqrt{3}\) hoặc \(a=1-\sqrt{3},b=-1-\sqrt{3}\)
\(M=\frac{a^2+b^2}{a-b}\)
Đặt \(a^2+b^2=x\Rightarrow\left(a-b\right)^2=x-4\)
Vì a>b nên x-4>0
\(M^2=\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}=\frac{x^2}{x-4}\) . Dễ thấy Min \(\frac{x^2}{x-4}=16\) vì \(x^2-16\left(x-4\right)=\left(x-8\right)^2\ge0\)
Do \(M\ge0\) nên Min M = 4 khi và chỉ khi \(\hept{\begin{cases}a^2+b^2=8\\a-b=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1-\sqrt{3}\\b=-1-\sqrt{3}\end{cases}}\)hoặc \(\hept{\begin{cases}a=1+\sqrt{3}\\b=\sqrt{3}-1\end{cases}}\)
\(M=\frac{a^2+b^2}{a-b}\)
Đặt \(a^2+b^2=x\Rightarrow\left(a-b\right)^2=x-4\)
Vì a>b nên x-a>0
\(M^2=\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}=\frac{x^2}{x-4}\). Dễ thấy Min. \(\frac{x^2}{x-4}=16\) vì \(x^2\) \(-16\left(x-4\right)=\left(x-8\right)^2\ge0\)
Do \(M\ge0\) nên Min M = 4 khi và chỉ khi \(\hept{\begin{cases}a^2+b^2=8\\a-b=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1-\sqrt{3}\\b=-1-\sqrt{3}\end{cases}}\)hoặc\(\hept{\begin{cases}a=1+\sqrt{3}\\b=\sqrt{3}-1\end{cases}}\)