Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tony Tony Chopper
Xem chi tiết
nguyen kim chi
Xem chi tiết
Phạm thị ngà
Xem chi tiết

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

nguyen kim chi
Xem chi tiết
Quynh Luong
Xem chi tiết
Phía sau một cô gái
12 tháng 2 2023 lúc 19:34

Theo đề, ta có:   \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}\) \(=\dfrac{x+y+z+t}{y+z+t+x}=1\) .

\(\Rightarrow x=y;y=z;z=t;t=x\)

\(\Rightarrow x=y=z=t\)

\(M=\dfrac{2x-y}{z+t}+\dfrac{2y-z}{t+x}+\dfrac{2z-t}{x+y}+\dfrac{2t-x}{y-z}\)

\(M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}\)

\(M=\dfrac{1}{2}.4\)

\(M=2\)

 

mèo con ngốc nghếch
Xem chi tiết
Trần Quốc An
Xem chi tiết
Akai Haruma
27 tháng 4 2019 lúc 23:13

Lời giải:

Áp dụng BĐT Cauchy cho các số không âm ta có:

\(\frac{2}{3}x^2+\frac{2}{3}y^2\geq 2.\sqrt{\frac{2}{3}x^2.\frac{2}{3}y^2}=2|\frac{2}{3}xy|\geq \frac{4}{3}xy\)

\(\frac{1}{3}x^2+\frac{4}{3}t^2\geq 2|\frac{2}{3}xt|\geq \frac{4}{3}xt\)

\(\frac{1}{3}y^2+\frac{4}{3}z^2\geq 2|\frac{2}{3}yz|\geq \frac{4}{3}yz\)

\(\frac{2}{3}z^2+\frac{2}{3}t^2\geq 2|\frac{2}{3}zt|\geq \frac{4}{3}zt\)

Cộng theo vế và rút gọn:

\(\Rightarrow x^2+y^2+2z^2+2t^2\geq \frac{4}{3}(xy+xt+yz+zt)\)

\(\Leftrightarrow 1\geq \frac{4}{3}(x+z)(y+t)\)

\(\Leftrightarrow A=(x+z)(y+t)\leq \frac{3}{4}\)

Vậy \(A_{\max}=\frac{3}{4}\)

Lu
Xem chi tiết
Neet
17 tháng 7 2017 lúc 19:22

Áp dụng BĐT bunyakovsky:

\(\left(x^2+y^2+2z^2+2t^2\right)\left(1+1+\dfrac{1}{2}+\dfrac{1}{2}\right)\ge\left(x+y+z+t\right)^2\)

Lại có: theo AM-GM:\(\left(x+y+z+t\right)^2\ge4\left(x+z\right)\left(y+t\right)\)

\(\Rightarrow4VT\le3\Leftrightarrow VT\le\dfrac{3}{4}\)

Dấu = xảy ra khi \(x=y=2z=2t=\dfrac{1}{\sqrt{3}}\)

P/s : Nếu đề mà cho là (x+y)(z+t) thì die :v

Trung Nguyen
Xem chi tiết