Cho \(x^2+y^2+2z^2+2t^2=1\)
Tìm Max M=(x+z)(y+t)
Cho \(x^2+y^2+2z^2+2t^2=1\)
Tìm Max M=(x+z)(y+t)
1 tim MAX cua (x+z)(y+t) biet x^2+y^2+z^2+t^2=1
2 tim MAX cua (x+z)(y+t) biet x^2+y^2+2z^2+2t^2=1
bài 1 : tìm các số x, y , z , t biết :
x/2 = y/3 ; 7x = 2t ; z/t = 5/7 và y+ 2z + 3t = 10z
bài 2 : tìm các số x , y biết a , x:y = 4:7 và x +y = 44
b, x/2 = y/5 và x + y = 28
bài 3 : cho M = x + 2y - 3z / x - 2y + 3z . tính giá trị của M biết x ,y , z tỉ lệ với 5 ; 4 ; 3
bài 4 : cho a/b = c/d . chứng minh a+3b/b = c+3d/d
( các tỉ số đều có nghĩa )
làm nhanh cho mình 4 bài này với
cảm ơn các friends nhiều
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
1 tìm giá trị lớn nhất của (x+y)(y+z) biết x^2+y^2+z^2+t^2=1
2 Tim giá trị lớn nhất của biểu thức (x+z)(y+t) biết x^2+y^2+2z^2+2t^2=1
2. Cho x,y,z,t ≠0 và x,y,z,t thỏa mãn x/y=y/z=z/t=t/x . Tính giá trị biểu thức M = 2x-y/z+t + 2y-z/t+x + 2z-t/x+y + 2t-x/y=z
Theo đề, ta có: \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}\) \(=\dfrac{x+y+z+t}{y+z+t+x}=1\) .
\(\Rightarrow x=y;y=z;z=t;t=x\)
\(\Rightarrow x=y=z=t\)
\(M=\dfrac{2x-y}{z+t}+\dfrac{2y-z}{t+x}+\dfrac{2z-t}{x+y}+\dfrac{2t-x}{y-z}\)
\(M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}\)
\(M=\dfrac{1}{2}.4\)
\(M=2\)
tìm gtln của (x+z)(y+t) biết x2+y2+2z2+2t2=1
Lời giải:
Áp dụng BĐT Cauchy cho các số không âm ta có:
\(\frac{2}{3}x^2+\frac{2}{3}y^2\geq 2.\sqrt{\frac{2}{3}x^2.\frac{2}{3}y^2}=2|\frac{2}{3}xy|\geq \frac{4}{3}xy\)
\(\frac{1}{3}x^2+\frac{4}{3}t^2\geq 2|\frac{2}{3}xt|\geq \frac{4}{3}xt\)
\(\frac{1}{3}y^2+\frac{4}{3}z^2\geq 2|\frac{2}{3}yz|\geq \frac{4}{3}yz\)
\(\frac{2}{3}z^2+\frac{2}{3}t^2\geq 2|\frac{2}{3}zt|\geq \frac{4}{3}zt\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^2+y^2+2z^2+2t^2\geq \frac{4}{3}(xy+xt+yz+zt)\)
\(\Leftrightarrow 1\geq \frac{4}{3}(x+z)(y+t)\)
\(\Leftrightarrow A=(x+z)(y+t)\leq \frac{3}{4}\)
Vậy \(A_{\max}=\frac{3}{4}\)
Tìm gtln của (x + z)(y + t) biết x2 + y2 + 2z2 + 2t2 = 1
Áp dụng BĐT bunyakovsky:
\(\left(x^2+y^2+2z^2+2t^2\right)\left(1+1+\dfrac{1}{2}+\dfrac{1}{2}\right)\ge\left(x+y+z+t\right)^2\)
Lại có: theo AM-GM:\(\left(x+y+z+t\right)^2\ge4\left(x+z\right)\left(y+t\right)\)
\(\Rightarrow4VT\le3\Leftrightarrow VT\le\dfrac{3}{4}\)
Dấu = xảy ra khi \(x=y=2z=2t=\dfrac{1}{\sqrt{3}}\)
P/s : Nếu đề mà cho là (x+y)(z+t) thì die :v
Tìm x,y,z,t biết:
x2+y=2x; y2+z=2y; z2+t=2z; t2+x=2t