Cho tam giác DEF vuông tại D cs DE=5cm. DF=30dm. Tính EF ( đơn vị cm)
Cho tam giác DEF vuông tại D biết DE = 12cm, DF = 5cm. Tính EF
Áp dụng định lí py - ta - go , ta có :
EF2 = ED2+DF2 = 122 + 52
= 144 + 25 = 169
EF2 = √169 = 13 ( cm )
Xét tam giác DEF vuông tại D
Có: \(DE^2+DF^2=EF^2\left(pitago\right)\)
Thay số\(12^2+5^2=EF^2\)
144+25=EF^2
EF^2=169
EF^2=13^2
=>EF=13
Chúc bn hok tốt
Cho tam giác DEF vuông tại D.p a/ xác định trực tâm của tam giác DEF b biết de = 3 cm df = 4 cm Tính EF c/ biết de = 6 cm EF = 10 cm Tính D F Cứu với ak
a: Trực tâm là điểm D
b: EF=căn 3^2+4^2=5cm
c: DF=căn 10^2-6^2=8cm
Cho tam giác DEF vuông tại D. Trên tia đối của DF lấy điểm M sao cho DM = DF a, cho DE= 9cm, DF = 12 cm, tính EF b, CM ∆DEM= ∆DEF c, kẻ DH vuông góc với ME, DK vuông góc với EF, cm ∆HEK cân d, CM HD // EF
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
a) Xét tam giác EDF có: EF2 = DE2 + DF2 (đ/lí py-ta-go)
=> EF2 = 92 + 122
=> EF2 = 81 + 144 = 225
=> EF = 112,5 cm
b) Xét tam giác DEM và tam giác DEF có :
EDM = EDF = 1v
ED chung
DM = DF (gt)
=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)
Cho tam giác DEF vuông tại D, đường cao DH. Hãy tính lần lượt độ dài các đoạn EF,DH nếu biết:
a)DE=3cm; DF=4cm
b)DE=12cm;DF=9cm
c)DE=12cm;DF=5cm
a) \(EF=\sqrt{3^2+4^2}=5\)(cm)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)
b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
cho tam giác DEF vuông tại D có DE = 6 cm ; EF = 10 cm. Tính độ dài cạn DF
Áp dụng định lí Pythagoras, ta có:
\(DE^2+DF^2=EF^2\\ DF^2=10^2-6^2\\ DF^2=100-36\\ DF^2=64\\ \Rightarrow DF=8\left(cm\right)\)
Theo định lý pitago ta có DE^2 + DF^2 = EF^2
=> 36 + DF^2 = 100
=> DF^2 = 100 - 36
=> DF^2 = 64
=> DF = 8
-áp dụng định lí bitago:DE^2+EF^2
=6^2+10^2=3600
suy ra DE=60
cho tam giác DEF vuông tại D biết DE =5cm;DF=12cm.Kẻ tia phân giác EH (H thuộc DF). Kẻ HN vuông góc EF (N thuộc EF)
a) tính EF
b) chứng minh rằng; tam giác EDH=tam giác ENH
kẻ hình hộ mình luôn nha mấy bạn
a, Xét Δ DEF vuông tại D, có :
\(EF^2=ED^2+DF^2\) (định lí Py - ta - go)
=> \(EF=13\left(cm\right)\)
b, Xét Δ EDH và Δ ENH, có :
\(\widehat{EDH}=\widehat{ENH}=90^o\)
EH là cạnh chung
\(\widehat{DEH}=\widehat{NEH}\) (EH là tia phân giác \(\widehat{EDN}\))
=> Δ EDH = Δ ENH (g.c.g)
a)Áp dụng định lí Pitago
DE2 + DF2 = EF2
hay 52 + 122 = EF2
25 + 144 = \(\sqrt{169}\)
EF = 13cm
b) Xét △ EDH và △ ENH có
EH là cạnh chung
\(\widehat{FDH}=\widehat{FNH}\)
\(\widehat{DEH}=\widehat{NEH}\)
Vậy △ EDH = △ ENH (c-g-c)
a: EF=13cm
b: Xét ΔEDH vuông tại D và ΔENH vuông tại N có
EH chung
\(\widehat{DEH}=\widehat{NEH}\)
Do đó: ΔEDH=ΔENH
Cho tam giác DEF vuông tại D, đường cao DI. Biết DF/EF=4/5 , DE = 18 cm . Giải tam giác DEF và tính độ dài DI
\(\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\Leftrightarrow DF=\dfrac{4}{5}EF\)
\(\Leftrightarrow DF=24\left(cm\right)\)
\(\Leftrightarrow FE=30\left(cm\right)\)
\(\Leftrightarrow DI=14.4\left(cm\right)\)
Cho tam giác DEF vuông tại D CÓ DE=4cm , EF=5cm . Tính độ dài cạnh DF
Chỉ mình với ạ
Xét tam giác DEF vuông tại D (gt)
\(\Rightarrow EF^2=DE^2+DF^2\)(định lí Pi-ta-go)
Mà \(\hept{\begin{cases}DE=4\left(gt\right)\\EF=5\left(gt\right)\end{cases}}\)
\(\Rightarrow5^2=4^2+DF^2\)
\(\Rightarrow25=16+DF^2\)
\(\Rightarrow DF^2=25-16=9\)
\(\Rightarrow DF=3\)(vì độ dài cạnh luôn lớn hơn 0)
cho tam giác DEF vuông tại D có DE=5cm DF=12cm. Gọi M là trung điểm của EF hãy tính độ dài cạnh EF rồi tính DM
Giúp giùm mình với :((
Áp dụng PTG: \(EF=\sqrt{DE^2+DF^2}=13\left(cm\right)\)
Vì DM là trung tuyến ứng cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{13}{2}\left(cm\right)\)