Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khanhboy hoàng
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
18 tháng 3 2023 lúc 13:37

`a,` Xét Tam giác `DEH` và Tam giác `DFH` có:

`DE=DF (\text {Tam giác ABC cân tại A})`

`\widehat{DEF}=\wide{DFE} (\text {Tam giác ABC cân tại A})`

`HE=HF (g``t)`

`=> \text {Tam giác DEH = Tam giác DFH (c-g-c)}`

`b, \text {Vì Tam giác DEH = Tam giác DFH (a)}`

`-> \widehat{DHE}= \widehat{DHF} (\text {2 góc tương ứng})`

`\text {Mà 2 góc này nằm ở vị trí đồng vị}`

`->\widehat{DHE}+ \widehat{DHF}=180^0`

`-> \widehat {DHE}= \wideha{DHF}=180/2=90^0`

`-> DH \bot EF`

`c,` Mình xp sửa đề là: \(\text{"Trên tia ĐỐI của DH lấy điểm K sao cho HD=HK"}\)

Xét Tam giác `DHE` và Tam giác `FHK` có:

`DH=HK (g``t)`

`\widehat{DHE}=\widehat{FHK} (\text {2 góc đối đỉnh})`

`HE=HF (g``t)`

`=> \text {Tam giác DHE = Tam giác FHK (c-g-c)}`

`-> \widehat{DEF}=\widehat{EFK} (\text {2 góc tương ứng})`

`\text {Mà 2 góc này nằm ở vị trí sole trong}`

`-> DE`//`FK (\text {tính chất đt' song song})`

loading...

 

khanhboy hoàng
18 tháng 3 2023 lúc 10:04

Cho tam giác DEF cân tại D,H là trung điểm EF

a)Chứng minh tam giác DEH = tam giác DFH 

b)Chứng minh DH vuông góc với EF 

c)Trên tia DH lấy điểm K sao cho HD = HK.Chứng minh DE // với FK

 
HOÀNG MINH  KHÔI
Xem chi tiết
Hạt Bụi Thiên Thần
14 tháng 4 2020 lúc 21:14

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)

Khách vãng lai đã xóa
Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 20:19

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của EF

hay EH=FH

b: EH=FH=EF/2=3(cm)

Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)

nên DH=4(cm)

c: Xét ΔDEM và ΔDFN có

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: \(\widehat{DEM}=\widehat{DFN}\)

d: Xét ΔNEH và ΔMFH có 

NE=MF

\(\widehat{E}=\widehat{F}\)

EH=FH

Do đó: ΔNEH=ΔMFH

Suy ra: HN=HM

hay H nằm trên đường trung trực của MN(1)

Ta có: KM=KN

nên K nằm trên đường trung trực của MN(2)

Ta có: DN=DM

nên D nằm trên đường trung trực của MN(3)

Từ (1), (2) và (3) suy ra D,H,K thẳng hàng

Nguyễn Ngọc Huy Toàn
14 tháng 2 2022 lúc 20:26

a. xét tam giác DHE và tam giác DHF, có:

D: góc chung

DE = DF ( DEF cân )

DH: cạnh chung

Vậy tam giác DHE = tam giác DHF ( c.g.c )

=> HE = HF ( 2 cạnh tương ứng )

b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm

áp dụng định lý pitago vào tam giác vuông DHE, có:

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

c.xét tam giác DEM và tam giác DFN có:

DE = DF ( DEF cân )

DM = DN ( gt )

D: góc chung

Vậy tam giác DEM = tam giác DFN ( c.g.c )

=> góc DEM = góc DFN ( 2 góc tương ứng )

d.xét tam giác DKM và tam giác DKN, có:

DM = DN ( gt )

D: góc chung

DK: cạnh chung

Vậy tam giác DKM = tam giác DKN ( c.g.c )

=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )

=> DK vuông BC

Mà DH cũng vuông BC

=> D,H,K thẳng hàng

Chúc bạn học tốt!!!

Hong Phong Nguyen
Xem chi tiết
cocacolastic
Xem chi tiết
You know???
26 tháng 3 2023 lúc 21:00

a) xét tam giác DHE và tam giác DHF có

DH chung

DE = DF (gt)

góc DHE = góc DHF (=90 độ)

=> tam giác DHE = tam giác DHF (c.g.c)

=> HE = HF

=> H là trung điểm của EF

b) xét tam giác EMH và tam giác FNH có

HE = HF (cmt)

Góc MEH = góc MFH (gt)

Góc EHM = góc FHM (đối đỉnh)

=> tam giác EMH = tam giác FNH (g.c.g)

=> HM = HN

=> tam giác HMN cân tại H

Nguyễn Lê Phước Thịnh
27 tháng 3 2023 lúc 1:15

a: Xét ΔDEH vuông tại H và ΔDFH vuông tại H có
DE=DF
DH chung

=>ΔDEH=ΔDFH

=>EH=FH

=>H là trung điểm của EF

b: Xet ΔDMH và ΔDNH có

DM=DN

góc MDH=góc NDH

DH chung

=>ΔDMH=ΔDNH

=>HM=NH

c: Xet ΔDEF có DM/DE=DN/DF

nên MN//EF

d: ΔDMN cân tại D

mà DI là trug tuyến

nên DI là phân giác của góc EDF

=>D,I,H thẳng hàng

nhung phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 18:55

a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có

DE=DF

DH chung

Do đó:ΔDHE=ΔDHF

b: EF=8cm nên HE=4cm

=>DH=3cm

c: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

\(\widehat{MDH}=\widehat{NDH}\)

Do đó:ΔDMH=ΔDNH

Suy ra: HM=HN

Nguyễn Tân Vương
7 tháng 3 2022 lúc 19:33

undefined

\(\text{a)}\text{Vì }\Delta DEF\text{ cân tại D}\)

\(\Rightarrow DE=DF\)

\(\widehat{E}=\widehat{F}\)

\(\text{Xét }\Delta DHE\text{ và }\Delta AHF\text{ có:}\)

\(DE=DF\left(cmt\right)\)

\(BH\text{ chung}\)

\(\widehat{E}=\widehat{F}\left(cmt\right)\)

\(\Rightarrow\Delta DHE=\Delta DHF\left(c-g-c\right)\)

\(\Rightarrow EH=HF\text{(hai cạnh tương ứng)}\)

\(\text{b)}\text{Vì }EH=HF\left(cmt\right)\)

\(\Rightarrow EH=\dfrac{EF}{2}=\dfrac{8}{2}=4\left(cm\right)\)

\(\text{Xét }\Delta DEH\text{ có:}\)

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH^2=DE^2-EH^2\text{(định lí Py ta go đảo)}\)

\(\Rightarrow DH^2=5^2-4^2=25-16=9\left(cm\right)\)

\(\Rightarrow DH=\sqrt{9cm}=3\left(cm\right)\)

\(\text{c)Xét }\Delta HMD\text{ và }\Delta HND\text{ có:}\)

\(DH\text{ chung}\)

\(\widehat{D_1}=\widehat{D_2}\left(\Delta DHE=\Delta DHF\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^0\)

\(\Rightarrow\Delta HMD=\Delta HND\left(ch-cgv\right)\)

\(\Rightarrow HM=HN\text{( hai cạnh tương ứng)}\)
 

Khang Quách
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2022 lúc 21:31

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của FE

hay HF=HE

b: EF=6cm nên HF=3cm

=>DH=4cm

c: Xét ΔDME và ΔDNF có 

DM=DN

\(\widehat{EMD}\) chung

DE=DF

Do đó: ΔDME=ΔDNF

BFF_HAI1
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
26 tháng 3 2023 lúc 19:50

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 

thanimtje
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 20:17

Bạn ghi lại đề đi bạn