Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Anh
Xem chi tiết

  Em dùng công thức toán học để ghi đề bài sẽ giúp hiểu đúng đề được em nhé. 

Mỹ Duyên
Xem chi tiết
Gay\
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 12 2020 lúc 9:54

Bạn xem lại đề bài, mặc dù bài này giải được ra kết quả cụ thể, nhưng chắc không ai cho đề như vậy cả

Sau khi tính toán thì \(P_{min}=4+2\sqrt{3}\) 

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{6\sqrt{3}-9}}{6};\dfrac{3+\sqrt{6\sqrt{3}-9}}{6}\right)\) và hoán vị

Nhìn thật kinh khủng, chẳng có lý gì cả.

Nếu điều kiện \(x+y=1\) thì biểu thức \(P=\dfrac{a}{x^3+y^3}+\dfrac{b}{xy}\) cần có tỉ lệ \(\dfrac{b}{a}\ge3\) để ra 1 kết quả đẹp mắt và bình thường

Ví dụ có thể cho đề là \(P=\dfrac{1}{3\left(x^3+y^3\right)}+\dfrac{1}{xy}\) hoặc \(P=\dfrac{1}{x^3+y^3}+\dfrac{4}{xy}\) gì đó :)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2019 lúc 12:03

Đáp án C

Ta có

Khi đó

Vậy giá trị nhỏ nhất của biểu thức P là  3 + 2 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 4 2019 lúc 17:07

pro
Xem chi tiết
pro
25 tháng 5 2021 lúc 20:38

Thiếu đề nhé. Giả thiết đang còn có là x+y bé thua hoặc bằng 1

dinh huong
Xem chi tiết
Nhi Uyển
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 11:37

#include <bits/stdc++.h>

using namespace std;

double b[100],x,ln,t;

int i,n,dem;

int main()

{

cin>>n;

ln=-1e10;

for (i=1; i<=n; i++)

{

cin>>b[i];

ln=max(ln,b[i]);

}

for (i=1; i<=n; i++)

cout<<b[i]<<" ";

cout<<endl;

cout<<ln<<endl;

t=0;

dem=0;

for (i=1; i<=n; i++) 

if (a[i]>x) 

{

t=t+a[i];

dem++;

}

cout<<fixed<<setprecision(2)<<t/(dem*1.0);

return 0;

}

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 6 2017 lúc 16:12

Đáp án C

P = 4 x y 2 x + x 2 + 4 y 2 P = 4 y x 2 1 + 1 + 4 y x 2 3

Đặt  1 + 4 y x 2 = t , t ≥ 1 ⇒ 4 y x 2 = t 2 − 1

Ta được hàm:

f ( t ) = t 2 − 1 1 + t 3 = t − 1 1 + t 2 , t ≥ 1 f ' ( t ) = − t 2 + 2 t + 3 1 + t 4 f ' ( t ) = 0 ⇔ t = − 1 ( L ) t = 3

Vậy  max P = max [ 1 ; + ∞ ) f ( t ) = 1 8

Nguyễn Ngọc Anh
Xem chi tiết