Câu 1 cho x,y>0 thỏa mãn xy=6 tìm min Q=2/x+3/y+6/3x+2y
Câu 2 cho x,y là các số thực dương thỏa mãn x+y<=1 tìm min P=(1/x+1/y)nhân với căn (1+x^2y^2)
Bạn nào giúp mình nhanh với mình đang cần gấp T.T
Cho x,y là các số thực dương thỏa mãn điều kiện x+y+xy=15. Tìm min của \(P=x^2+y^2\)
cho x và y là 2 số thực dương thỏa mãn: 3x+y≤4.
Tìm giá trị nhỏ nhất của A=1/x+1/√xy giúp mik với ạ=))
Cho các số thực dương x,y thỏa mãn điều kiện căn(xy)×(x-y)=(x+y)
Tìm Min x+y
cho x,y là số thực dương thỏa mãn \(\sqrt{xy}\left(x-y\right)=x+y\). Tìm min \(P=x+y\)
Cho x,y là các số dương thỏa mãn xy=1.tìm Min của M biết M=(x+y+1)(x^2+y^2)+4/(x+y)
cho các số thực x.y dương thỏa mãn x+y\(\le4\),,tìm min của p=\(\frac{2}{x^2+y^2}+\frac{35}{xy}+2xy\)
viết các số thực dương x,y,z thỏa mãn xyz=1,chứng minh rằng
\(\sqrt{\dfrac{x^4+y^4+z}{3z^3}}+\sqrt{\dfrac{y^4+z^4+x}{3x^3}}+\sqrt{\dfrac{z^4+x^4+y}{3y^3}}\ge x^2+y^2+z^2\)
Mọi người giúp em với em cần gấp ạ
Giúp mn vs :<
Cho x,y là các số thực dương thỏa mãn \(x+\dfrac{1}{y}< =1\). Tìm giá trị nhỏ nhất của \(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)