1/4 x 7/16 × 1/4 8/16
Tính :
2/5 + 11/15 =
7/8 - 7/9 =
11/13 x 26/31 =
16/24 : 4 =
30 : 6/5 =
9/16 : 4 =
1/2 : 1/3 x 8/15 =
\(\dfrac{2}{5}+\dfrac{11}{15}=\dfrac{6}{15}+\dfrac{11}{15}=\dfrac{17}{15}\)
\(\dfrac{7}{8}-\dfrac{7}{9}=\dfrac{63}{72}-\dfrac{56}{72}=\dfrac{7}{72}\)
\(\dfrac{11}{13}\times\dfrac{26}{31}=\dfrac{22}{31}\)
\(\dfrac{16}{24}:4=\dfrac{16}{24}\times\dfrac{1}{4}=\dfrac{4}{24}=\dfrac{1}{6}\)
\(30:\dfrac{6}{5}=30\times\dfrac{5}{6}=25\)
\(\dfrac{9}{16}:4=\dfrac{9}{16}\times\dfrac{1}{4}=\dfrac{9}{64}\)
\(\dfrac{1}{2}:\dfrac{1}{3}\times\dfrac{8}{15}=\dfrac{1}{2}\times3\times\dfrac{8}{15}=\dfrac{4}{5}\)
2/5 + 11/15 = 17/15
7/8 - 7/9 = 7/72
11/13 x 26/31 = 22/31
16/24 : 4 = 1/6
30 : 6/5 = 25
9/16 : 4 = 9/64
1/2 : 1/3 x 8/15 = 3/2 x 8/15 = 4/5
Rút gọn biểu thức:
A) x – ( x/2 + 1/2 )
B) (x/2 – 1/2) : 2 + 1/2
C) (x/2 – 1/2) – (x/4 + 1/4)
D) (x/4 – 3/4) : 2 + 1/2
E) (x/4 – 3/4) – (x/8 + 1/8)
F) (x/8 – 7/8) : 2 + 1/2
G) (x/8 – 7/8) – (x/16 + 1/16)
H) (x/16 – 15/16) : 2 + 1/2
I) (x/16 – 15/16) – (x/32 + 1/32)
Phân tích thành nhân tử
1, a^4+a^2+1
2,a^4+4b^4
3,64x^4+1
4, x^5+x^4+1
5, x^7+x^2+1
6, x^8+x+1
7, x^4-4x^2+4x-1
8, a^16+a^8b^8+b^16
1)
=a^4+2a^2+1-a^2
=(a^2+1)^2-a^2
=(a^2-a+1)(a^2+a+1)
2)
=a^4+4b^4-4a^2b^2
=(a^2+2b^2)^2-4a^2b^2
=(a^2-2ab+2b^2)(a^2+2ab+2b^2)
3)
=(8x^2+1)^2-16x^2
=(8x^2-4x+1)(8x^2+4x+1).
4)
=x^5+x^4+x^3-x^3+1
=x^2(x^2+x+1)-(x-1)(x^2+x+1)
=(x^2-x+1)(x^2+x+1)
5).
=x^7-x+x^2+x+1
=x(x^6-1)+x^2+x+1
=x(x^3-1)(x^3+1)+x^2+x+1
=x(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
=(x^2+x+1)[(x^2-x)(x^3+1)+1]
6)
=x^8-x^2+x^2+x+1
=x^2(x-1)(x^2+x+1)(x^3+1)+x^2+x+1
Xong nhóm x^2+x+1 vào.
7)
=x^4-(2x-1)^2
=(x^2-2x+1)(x^2+2x-1)
8)
=(a^8+b^8)^2-a^8b^8
=(a^8-a^4b^4+b^8)(a^8+a^4b^4+b^8).
1,a) cho x^2+y^2=20 và xy=8. Tính giá trị cua (x+y)^2
b)cho x+y=8 và xy=15. Tinh x^2+y^2
2, Rút gọn biểu thức:
M=(2^2+1).(2^4+1).(2^8+1).(2^16+1)
N=16.(7^2+1).(7^4+1).(7^8+1).(7^16+1)
Bài 1 :
a ) Ta có :
\(\left(x+y\right)^2=x^2+y^2+2xy=20+16=36\)
b ) Ta có :
\(x^2+y^2=\left(x+y\right)^2-2xy=64-30=34\)
Bài 8: Phân tích đa thức sau thành nhân tử
1)(x+y)^2-9x^2
2)(3x-1)^2-16
3)4x^2-(x^2+1)^2
4)(2x+1)^2 -(x-1)^2
5)(x+1)^4 - (x-1)^4
6)25(x-y)^2 - 16(x+y)^2
7) (x^2+xy)^2 - (y^2 + xy)^2
8)(x^2 +4y^2-20)^2 -16(xy-4)^2
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
Phân tích thành nhân tử ( thêm bớt hạng tử)
1, a^4+a^2+1
2,a^4+4b^4
3,64x^4+1
4, x^5+x^4+1
5, x^7+x^2+1
6, x^8+x+1
7, x^4-4x^2+4x-1
8, a^16+a^8b^8+b^16
1, a4 + a2 + 1
= a4 + 2a2 + 1 - a2
= (a2)2 + 2a2 + 1 - a2
= (a2 + 1)2 - a2
= (a2 + 1 - a)(a2 + 1 + a)
2, a4 + 4b4
= (a2)2 + 2. a2 . b2 + (2b)2 - a2 . b2
= (a2 + 2b)2 - (ab)2
= (a2 + 2b - ab)(a2 + 2b + ab)
3, 64x4 + 1
= (8x2)2 + 16x2 + 1 - 16x2
= (8x2 + 1)2 - (4x)2
= (8x2 + 1 - 4x)(8x2 + 1 + 4x)
4, x5 + x4 + 1
= x5 + x4 + x3 - x3 - x2 - x + x + x2 + 1
= (x5 + x4 + x3) - (x3 + x2 + x) + (x + x2 + 1)
= x3(x2 + x + 1) - x(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x3 - x + 1)
5, x7 + x2 + 1
= x7 – x + x2 + x + 1
= x(x6 – 1) + (x2 + x + 1)
= x(x3 – 1)(x3 + 1) + (x2 + x + 1)
= x(x3 + 1)(x – 1) (x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[ x(x3 + 1)(x – 1) + 1]
= (x2 + x + 1)(x5 – x4 + x3 – x2 + x – 1)
6, x8 + x + 1
= x8 + x7 + x6 - x7 - x6 - x5 + x5 + x4 + x3 - x4 - x3 - x2 + x2 + x + 1
= (x8 + x7 + x6) - (x7 + x6 + x5) + (x5 + x4 + x3 ) - (x4 + x3 + x2) + (x2 + x + 1)
= x6(x2 + x + 1) - x5(x2 + x + 1) + x3(x2 + x + 1) - x2(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)
7, x4 - 4x2 + 4x - 1
= x4 - (4x2 - 4x + 1)
= (x2)2 - (2x - 1)2
= (x2 - 2x + 1)(x2 + 2x - 1)
= (x - 1)2 (x2 + 2x - 1)
8, a16 + a8b8 + b16
= (a16 + 2a8b8 + b16) - a8b8
= (a8 + b8)2 - (a4b4)2
= (a8 + b8 - a4b4)(a8 + b8 + a4b4)
= (a8 + b8 - a4b4)[(a8 + b8 + 2a4b4) - a4b4]
= (a8 + b8 - a4b4)[(a4 + b4)2 - (a2b2)2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a4 + b4 + a2b2)
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a4 + b4 + 2a2b2) - a2b2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)[(a2 + b2) - (ab)2]
= (a8 + b8 - a4b4)(a4 + b4 - a2b2)(a2 + b2 - ab)(a2 + b2 + ab)
TÍNH NHANH
a) 3/16 + 4/15 + 5/16 + 1/15
b) 6/7 x 8/15 x 7/6 x 15/16
c) 19/20 x 13/21 + 9/20 x 8/21
d) (1+ 10/15 ) x (1+ 1/16 ) x ( 1+ 1/17 ) x ( 1+ 1/18 )
MINK ĐANG CẦN GẤP
a) \(\frac{3}{16}+\frac{4}{15}+\frac{5}{16}+\frac{1}{15}\)
\(=\left(\frac{3}{16}+\frac{5}{16}\right)+\left(\frac{4}{15}+\frac{1}{15}\right)\)
\(=\frac{1}{2}+\frac{1}{3}\)
\(=\frac{5}{6}\)
b) \(\frac{6}{7}\times\frac{8}{15}\times\frac{7}{6}\times\frac{15}{16}\)
\(=\left(\frac{6}{7}\times\frac{7}{6}\right)\times\left(\frac{8}{15}\times\frac{15}{16}\right)\)
\(=1\times\frac{1}{2}=\frac{1}{2}\)
c) \(\frac{19}{20}\times\frac{13}{21}+\frac{9}{20}\times\frac{8}{21}\)
\(=\frac{19\times13}{20\times21}+\frac{9\times8}{20\times21}\)
\(=\frac{247}{420}+\frac{72}{420}\)
\(=\frac{319}{420}\)
tích cho chị nha
câu a) = 5/6
câu b = 1/2
câu c = 319/420
Viết các biểu thức sau dưới dạng một lũy thừa:
6; 3/2 x 9/4 x 81/16
7; (1/2)^7 x 8 x 32 x 2^8
8; (-1/7)^4 x 125 x 5
9; 4 x 32 : (2^3 x 1/16)
10; (1/7)^2 x 1/7 x 49
\(\dfrac{3}{2}\times\dfrac{9}{4}\times\dfrac{81}{16}=\dfrac{3}{2}\times\left(\dfrac{3}{2}\right)^2\times\left(\dfrac{3}{2}\right)^4=\left(\dfrac{3}{2}\right)^7\)
\(\left(\dfrac{1}{2}\right)^7\times8\times32\times2^8=\left(\dfrac{1}{2}\right)^7\times2^3\times2^5\times2^8=\left(\dfrac{1}{7}\right)^7\times2^{16}\)
\(\left(-\dfrac{1}{7}\right)^4\times125\times5=\left(-\dfrac{1}{7}\right)^4\times5^3\times5=\left(-\dfrac{1}{7}\right)^4\times5^4\)
\(4\times32:\left(2^3\times\dfrac{1}{16}\right)=2^2\times2^5:2^3:2^{-4}=2^0\)
\(\left(\dfrac{1}{7}\right)^2\times\dfrac{1}{7}\times49=\left(\dfrac{1}{7}\right)^3\times7^3=1^3\)
6, \(\dfrac{3}{2}\times\dfrac{9}{4}\times\dfrac{81}{16}=\dfrac{3}{2}\times\left(\dfrac{3}{2}\right)^2\times\left(\dfrac{3}{2}\right)^4\)
7,\(\left(\dfrac{1}{2}\right)^7\times8\times32\times2^8=\left(\dfrac{1}{2}\right)^7\times2^3\times2^5\times2^8\)
8,\(\left(-\dfrac{1}{7}\right) ^4\times125\times5=\left(\dfrac{1}{7}\right)^4\times5^3\times5\)
9,\(4\times32:\left(2^3\times\dfrac{1}{16}\right)=2^2\times2^5:\left[2^3\times\left(\dfrac{1}{2}\right)^4\right]\)
10, \(\left(\dfrac{1}{7}\right)^2\times\dfrac{1}{7}\times49=\left(\dfrac{1}{7}\right)^2\times\dfrac{1}{7}\times7^2\)
6) \(...=\dfrac{3}{2}.\left(\dfrac{3}{2}\right)^2.\left(\dfrac{3}{2}\right)^4=\left(\dfrac{3}{2}\right)^7\)
7) \(...=2^{-7}.2^3.2^5.2^8=2^9\)
8) \(...=\left(\dfrac{1}{7}\right)^4.5^3.5=\left(\dfrac{1}{7}\right)^4.5^4\)
9) \(...=2^2.2^5:\left(2^3.2^{-4}\right)=2^8\)
10) \(...=\left(\dfrac{1}{7}\right)^3.\left(\dfrac{1}{7}\right)^2=\left(\dfrac{1}{7}\right)^5\)
1/
cho x^2+y^2= 20 và xy=8. tính giá trị của (x+y)^2
2/rút gọn biểu thức
M= (2^2+1) (2^4+1) (2^8+1) (2^16+1)
N= 16 (7^2+1) (7^4+1) (7^8+1) (7^16+1)
Nhờ các bạn giúp mình với, chiều chủ nhật 31/6 mình cần gấp
1) ta có \(\left(x+y\right)^2=x^2+2xy+y^2.\)
\(=\left(x^2+y^2\right)+2xy\)
\(=20+2.8\)(theo giả thiết x^2+y^2=20 , xy=8)
\(=36\)
Vậy với x^2+y^2=20, xy=8 thì (x+y)^2=36
2) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Rightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^2\right)^2-1^2\right]\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^4\right)^2-1^2\right]\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^8\right)^2-1^2\right]\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}\right)^2-1^2\)
\(\Leftrightarrow3M=2^{32}-1\)
\(\Rightarrow M=\frac{2^{32}-1}{3}\)
RÚT GỌN BIỂU THỨC N BẠN LÀM TƯƠNG TỰ NHA
\(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Rightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(...\)
\(...\)
Kết quả rút gọn \(N=\frac{7^{32}-1}{3}\)